

Open Source API Specification

Version 1.0a0

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” in this document are to be interpreted as described in RFC 2119 [http://www.ietf.org/rfc/rfc2119.txt].

This specification is licensed under The MIT License [https://opensource.org/licenses/MIT].

	Introduction

	Revision History

	Definitions

	Functional Specifications
	Hypothesis

	Concepts

	Interface
	Functions/Sevices

	Dictionaries

	Use Cases
	Birth Use Case

	Death Use Case

	Fœtal Death Use Case

	Marriage Use Case

	Divorce Use Case

	Annulment Use Case

	Separation Use Case

	Adoption Use Case

	Legitimation Use Case

	Recognition Use Case

	Change of Name/Gender Use Case

	Transcription Use Case

	Change of Nationality Use Case

	Deduplication

	Technical Specifications
	Services
	UIN Management

	Data Access

	Notifications

	Data Model
	Person Attributes

	Notification Message

	Matching Error

	Expression

	Error

Introduction

To be completed

Revision History

	Version

	Date

	Notes

	1.0

	2018-12-xx

	Release of version 1.0

	1.0a0

	2018-07-31

	First alpha version

Definitions

	CR

	Civil Registry. The system in charge of the continuous, permanent, compulsory and universal recording
of the occurrence and characteristics of vital events pertaining to the population, as provided
through decree or regulation in accordance with the legal requirements in each country.

	CI

	Civil Identity. The system in charge of the recording of selected information pertaining to each member
of the resident population of a country. To be completed

	Mime Types

	Mime type definitions are spread across several resources. The mime type definitions should be in compliance with
RFC 6838 [http://tools.ietf.org/html/rfc6838].

Some examples of possible mime type definitions:

text/plain; charset=utf-8
application/json
application/vnd.github+json
application/vnd.github.v3+json
application/vnd.github.v3.raw+json
application/vnd.github.v3.text+json
application/vnd.github.v3.html+json
application/vnd.github.v3.full+json
application/vnd.github.v3.diff
application/vnd.github.v3.patch

	HTTP Status Codes

	The HTTP Status Codes are used to indicate the status of the executed operation. The available status codes are
described by RFC 7231 [http://tools.ietf.org/html/rfc7231#section-6] and in the
IANA Status Code Registry [http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml].

	UIN

	Unique Identity Number.

To be completed

Functional Specifications

Hypothesis

The design of this interface is based on the following assumptions:

	All persons recorded in CR have a UIN. The UIN can be used as a key to access person data for all records.

	All persons recorded in CI have a UIN. The UIN can be used as a key to access person data for all records.

	The CR and CI are both considered as centralized systems that are connected. If CR is architectured in a
decentralized way, and it is often the case, one of its component must be centralized, connected to the network,
and in charge of the exchanges with CI.

	Since all instances of CR and CI are customized for each business needs, dictionaries must be explicitly
defined to describe the attributes, the event types, and the document types. See Dictionaries for
the mandatory elements of those dictionaries.

	The relationship parent/child is not mandatory in CI. A CI implementation may manage this relationship
or may ignore it and rely on CR to manage it.

	All persons are stored in CI. There is no record in CR that is not also in CI.

	The interface does not expose biometric services. Usage of biometrics is optional and is described in other
standards already defined.

Concepts

To be completed

Interface

Functions/Sevices

This chapter describes in pseudo code the services defined between CR and CI.
There three categories of services:

	UIN management. This service can be implemented by CI, by CR or by another system. We will consider it is provided
by a system called UIN Generator.

	Notifications. When data is changed, a notification is sent and received by systems that registered for
this type of events. For instance, CI can register for the events birth emitted by CR.

	Data access. A set of services to access data.

UIN Management

	
createUIN(attributes)

	Generate a new UIN.

	Parameters

	attributes (list[(str,str)]) – A list of pair (attribute name, value) that can be used to allocate a new UIN

	Returns

	a new UIN or an error if the generation is not possible

This service is synchronous.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "CI" as CI participant "UIN Generator" as UIN note over CR,UIN: CR can request a new UIN CR -> UIN: createUIN([attributes]) UIN -->> CR: UIN note over CI,UIN: CI can request a new UIN CI -> UIN: createUIN([attributes]) UIN -->> CI: UIN]

createUIN Sequence Diagram

Notifications

	
notify(type, UIN)

	Notify of a new event all systems that subscribed to this event

	Parameters

	
	type (str) – Event type

	UIN (list[str]) – Records affected by the event

	Returns

	N/A

This service is asynchronous.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "CI" as CI note over CR,CI: CR can notify CI of new events CR ->> CI: notify(type,[UIN]) note over CR,CI: CI can notify CR of new events CI ->> CR: notify(type,[UIN])]

notify Sequence Diagram

Note

Notifications are possible after the receiver has subscribed to an event.

Data Access

	
getPersonAttributes(UIN, names)

	Retrieve person attributes.

	Parameters

	
	UIN (str) – The person’s UIN

	names (list[str]) – The names of the attributes requested

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from CI.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "CI" as CI note over CR,CI: CR can request person's attributes from CI CR -> CI: getPersonAttributes(UIN,[names]) CI -->> CR: attributes note over CR,CI: CI can request person's attributes from CR CI -> CR: getPersonAttributes(UIN,[names]) CR -->> CI: attributes]

getPersonAttributes Sequence Diagram

	
matchPersonAttributes(UIN, attributes)

	Match person attributes. This service is used to check the value of attributes without exposing private data

	Parameters

	
	UIN (str) – The person’s UIN

	attributes (list[(str,str)]) – The attributes to match. Each attribute is described with its name and the expected value

	Returns

	If all attributes match, a Yes is returned. If one attribute does not match, a No is returned along with a list of (name,reason) for each non-matching attribute.

This service is synchronous. It can be used to match attributes in CR or in CI.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "CI" as CI note over CR,CI: CR can match person's attributes in CI CR -> CI: matchPersonAttributes(UIN,[attributes]) CI -->> CR: Y/N+reasons note over CR,CI: CI can match person's attributes in CR CI -> CR: matchPersonAttributes(UIN,[attributes]) CR -->> CI: Y/N+reasons]

matchPersonAttributes Sequence Diagram

	
verifyPersonAttributes(UIN, expressions)

	Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s attributes
without exposing private data

	Parameters

	
	UIN (str) – The person’s UIN

	expressions (list[(str,str,str)]) – The expressions to evaluate. Each expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=) and the attribute value

	Returns

	A Yes if all expressions are true, a No if one expression is false, a Unknown if To be defined

This service is synchronous. It can be used to verify attributes in CR or in CI.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "CI" as CI note over CR,CI: CR can verify person's attributes in CI CR -> CI: verifyPersonAttributes(UIN,[expressions]) CI -->> CR: Y/N/U note over CR,CI: CI can verify person's attributes in CR CI -> CR: verifyPersonAttributes(UIN,[expressions]) CR -->> CI: Y/N/U]

verifyPersonAttributes Sequence Diagram

	
getPersonUIN(attributes)

	Retrieve UIN based on a set of attributes. This service is used when the UIN is unknown.

	Parameters

	attributes (list[(str,str)]) – The attributes to be used to find UIN. Each attribute is described with its name and its value

	Returns

	a list of matching UIN

This service is synchronous. It can be used to get the UIN of a person.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "CI" as CI note over CR,CI: CR can get UIN from CI CR -> CI: getPersonUIN([attributes]) CI -->> CR: [UIN] note over CR,CI: CI can get UIN from CR CI -> CR: getPersonUIN([attributes]) CR -->> CI: [UIN]]

getPersonUIN Sequence Diagram

	
getDocument(UINs, documentType, format)

	Retrieve in a selected format (PDF, image, …) a document such as a marriage certificate.

	Parameters

	
	UIN (list[str]) – The list of UINs for the persons concerned by the document

	documentType (str) – The type of document (birth certificate, etc.)

	format (str) – The format of the returned/requested document

	Returns

	The list of the requested documents

This service is synchronous. It can be used to get the documents for a person.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "CI" as CI note over CR,CI: CR can get a document from CI CR -> CI: getDocument([UIN],documentType,format) CI -->> CR: [documents] note over CR,CI: CI can get a document from CR CI -> CR: getDocument([UIN],documentType,format) CR -->> CI: [documents]]

getDocument Sequence Diagram

Dictionaries

Attributes

Person Attributes

	Attribute Name

	In CR

	In CI

	Description

	UIN

	✔

	✔

	

	first name

	✔

	✔

	

	last name

	✔

	✔

	

	spouse name

	✔

	✔

	

	date of birth

	✔

	✔

	

	place of birth

	✔

	✔

	

	gender

	✔

	✔

	

	date of death

	✔

	✔

	

	place of death

	✔

	
	

	reason of death

	✔

	
	

	status

	
	✔

	Example: missing, wanted, dead, etc.

Certificate Attributes

	Attribute Name

	In CR

	In CI

	Description

	officer name

	✔

	
	

	number

	✔

	
	

	date

	✔

	
	

	place

	✔

	
	

	type

	✔

	
	

Union Attributes

	Attribute Name

	In CR

	In CI

	Description

	date of union

	✔

	
	

	place of union

	✔

	
	

	conjoint1 UIN

	✔

	
	

	conjoint2 UIN

	✔

	
	

	date of divorce

	✔

	
	

Filiation Attributes

	Attribute Name

	In CR

	In CI

	Description

	parent1 UIN

	✔

	
	

	parent2 UIN

	✔

	
	

Events

Event Type

	Event Type

	Emitted by CR

	Emitted by CI

	Live birth

	✔

	

	Death

	✔

	

	Birth cancellation

	✔

	

	Fœtal Death

	✔

	

	Marriage

	✔

	

	Divorce

	✔

	

	Annulment

	✔

	

	Separation, judicial

	✔

	

	Adoption

	✔

	

	Legitimation

	✔

	

	Recognition

	✔

	

	Change of name

	✔

	

	Change of gender

	✔

	

	Person update

	✔

	✔

	New person

	
	✔

	Duplicate person

	
	✔

Documents

Document Type

	Document Type

	Description

	birth certificate

	To be completed

	death certificate

	To be completed

	marriage certificate

	To be completed

Use Cases

Birth Use Case

[image: !include "skin.iwsd" hide footbox actor "Mother or Father" as parent participant "CR" as CR participant "CI" as CI participant "UIN Generator" as UINGen parent -> CR activate parent activate CR group 1. Checks CR -> CI: matchPersonAttributes(mother attributes) CR -> CI: matchPersonAttributes(father attributes) CR -> CI: getPersonAttributes(mother) CR -> CI: getPersonAttributes(father) CR -> CI: getPersonUIN(new born attributes) CR -> CR: Additional checks end group 2. Creation CR -> UINGen: createUIN() CR -> CR note right: register the birth CR -->> parent: certificate destroy parent end group 3. Notification CR ->> CI: notify(birth,UIN) deactivate CR ... CI -> CR: getPersonAttributes(new born) activate CI CI -> CR: getPersonAttributes(mother) CI -> CR: getPersonAttributes(father) CI -> CI note right: create/update identities deactivate CI end]

Birth Use Case

	Checks

When a request is submitted, the CR may run checks against the data available in the CI using:

	matchPersonAttributes: to check the exactitude of the parents’ attributes as known in the CI

	getPersonAttributes: to get missing data about the parents’s identity

	getPersonUIN: to check if the new born is already known to CI or not

How the CR will process the request in case of data discrepancy is specific to each CR implementation
and not in the scope of this document.

	Creation

The birth is registered in the CR. The first step after the checks is to generate a new UIN
a call to createUIN.

	Notification

As part of the birth registration, it is the responsibility of the CR to notify other systems, including the CI,
of this event using:

	notify: to send a birth along with the new UIN.

The CI, upon reception of the birth event, will update the identity registry with this new identity using:

	getPersonAttributes: to get the attributes of interest to the CI for the parents and the new child.

Death Use Case

To be completed

Fœtal Death Use Case

To be completed

Marriage Use Case

To be completed

Divorce Use Case

To be completed

Annulment Use Case

To be completed

Separation Use Case

To be completed

Adoption Use Case

To be completed

Legitimation Use Case

To be completed

Recognition Use Case

To be completed

Change of Name/Gender Use Case

To be completed

Transcription Use Case

To be completed

Change of Nationality Use Case

(To be confirmed)

Deduplication

During the lifetime of a registry, it is possible that duplicates are detected. This can happen for instance
after the addition of biometrics in the system. When a registry considers that two records are actually the same
and decides to merge them, a notification must be sent.

[image: !include "skin.iwsd" hide footbox participant "CI" as CI participant "CR" as CR CI -> CI: deduplicate() activate CI CI ->> CR: notify(duplicate,[UIN]) deactivate CI ... CR -> CI: getPersonAttributes(UIN) activate CR activate CI CR -> CR: merge() deactivate CI note right: merge/register duplicate deactivate CR]

Deduplication Use Case

How the target of the notification should react is specific to each subsystem.

Technical Specifications

Services

UIN Management

	
POST /v1/uin

	Request the generation of a new UIN.

The request body should contain a list of attributes and their value, formatted as a json dictionary.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – UIN is generated

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

POST http://server.com/v1/uin HTTP/1.1
Host: server.com
Content-Type: application/json

{
 "firstName": "John",
 "lastName": "Doo",
 "dateOfBirth": "1984-11-19"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

1235567890

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Data Access

	
GET /v1/persons

	Retrieve a UIN based on a set of attributes.
This service is used when the UIN is unknown.

	Query Parameters

	
	attributes (object) – The attributes used to retrieve the UIN
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – All UIN found (a list of at least one UIN)

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid parameter

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – No UIN found

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

GET /v1/persons?firstName=John&lastName=Do HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 "1235567890"
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/persons/{uin}

	Retrieve attributes for a person.

	Parameters

	
	uin (string) – Unique Identity Number

	Query Parameters

	
	attributeNames (array) – The names of the attributes requested for this person
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Requested attributes values or Error description.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

GET /v1/persons/{uin}?attributeNames=firstName&attributeNames=lastName&attributeNames=dob HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "firstName": "John",
 "lastName": "Doo",
 "dob": {
 "code": 1023,
 "message": "Unknown attribute name"
 }
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/persons/{uin}/match

	Match person attributes.
This service is used to check the value of attributes without exposing private data.

The request body should contain a list of attributes and their value, formatted as a json dictionary.

	Parameters

	
	uin (string) – Unique Identity Number

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Information about non matching attributes. Returns a list of matching result (See Matching Error)
An empty list indicates all attributes were matching.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

POST /v1/persons/{uin}/match HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "firstName": "John",
 "lastName": "Doo",
 "dateOfBirth": "1984-11-19"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "attributeName": "firstName",
 "errorCode": 1
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/persons/{uin}/verify

	Evaluate expressions (See Expression) on person attributes.
This service is used to evaluate simple expressions on
person’s attributes without exposing private data

The request body should contain a list of Expression.

	Parameters

	
	uin (string) – Unique Identity Number

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The expressions are all true (true is returned) or one is false (false is returned)

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access. The service is forbidden or one of the attributes is forbidden.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

POST /v1/persons/{uin}/verify HTTP/1.1
Host: example.com
Content-Type: application/json

[
 {
 "attributeName": "firstName",
 "operator": "=",
 "value": "John"
 },
 {
 "attributeName": "dateOfBirth",
 "operator": "<",
 "value": "1990-12-31"
 }
]

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

true

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/persons/{uin}/document

	Retrieve in an unstructured format (PDF, image) a document such as a marriage certificate.

	Parameters

	
	uin (string) – Unique Identity Number

	Query Parameters

	
	secondaryUin (string) – Unique Identity Number of a second person linked to the requested document.
Example: wife, husband

	doctype (string) – The type of document
(Required)

	format (string) – The expected format of the document.
If the document is not available at this format, it must be converted.
TBD: one format for certificate data.
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The document(s) is/are found and returned, as binary data in a MIME multipart structure.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	415 Unsupported Media Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16] – Unsupported format

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

GET /v1/persons/{uin}/document?doctype=marriage&secondaryUin=234567890&format=pdf HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Notifications

Attention

The interface to subscribe, receive, and notify events is not described here.
It has not been decided if it is worth defining a neutral interface abstracting
the broker and making the CR & CI provider independent from the broker selected
by the integrator, or if it is better to use the native interface of the broker.

The first solution means an abstraction of the broker must be implemented, adding
possible source of bugs or failures.

The second solution means the CR or CI cannot be simply replaced by a CR or CI
from another vendor without some adaptation to use the interface of the broker.

To all reviewers: please comment and propose on this topic.

Data Model

Person Attributes

When exchanged in the services described in this document, the persons attributes
will apply the following rules:

Person Attributes

	Attribute Name

	Description

	Format

	uin

	Unique Identity Number

	Text

	firstName

	First name

	Text

	lastName

	Last name

	Text

	spouseName

	Spouse name

	Text

	dateOfBirth

	Date of birth

	Date (iso8601). Example: 1987-11-17

	placeOfBirth

	Place of birth

	Text

	gender

	Gender

	Number (iso5218). One of 0 (Not known), 1 (Male), 2 (Female), 9 (Not applicable)

	dateOfDeath

	Date of death

	Date (iso8601). Example: 2018-11-17

	placeOfDeath

	Place of death

	Text

	reasonOfDeath

	Reason of death

	Text

	status

	Status. Example: missing, wanted, dead, etc.

	Text

Notification Message

This section describes the messages exchanged through notification. All messages
are encoded in json. They are generated by the emitter (the source of the event)
and received by zero, one, or many receivers that have subscribed to the type of event.

Event Type & Message

	Event Type

	Message

	liveBirth

	
	source: identification of the system emitting the event

	uin of the new born

	uin1 of the first parent (optional if parent is unknown)

	uin2 of the second parent (optional if parent is unknown)

Example:

{
 "source": "systemX",
 "uin": "123456789",
 "uin1": "123456789",
 "uin2": "234567890"
}

	death

	
	source: identification of the system emitting the event

	uin of the dead person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	birthCancellation

	
	source: identification of the system emitting the event

	uin of the person whose birth declaration is being cancelled

Example:

{
 "source": "systemX",
 "uin": "123456789",
}

	foetalDeath

	
	source: identification of the system emitting the event

	uin of the new born

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	marriage

	
	source: identification of the system emitting the event

	uin1 of the first conjoint

	uin2 of the second conjoint

Example:

{
 "source": "systemX",
 "uin1": "123456789",
 "uin2": "234567890"
}

	divorce

	
	source: identification of the system emitting the event

	uin1 of the first conjoint

	uin2 of the second conjoint

Example:

{
 "source": "systemX",
 "uin1": "123456789",
 "uin2": "234567890"
}

	annulment

	
	source: identification of the system emitting the event

	uin1 of the first conjoint

	uin2 of the second conjoint

Example:

{
 "source": "systemX",
 "uin1": "123456789",
 "uin2": "234567890"
}

	separation

	
	source: identification of the system emitting the event

	uin1 of the first conjoint

	uin2 of the second conjoint

Example:

{
 "source": "systemX",
 "uin1": "123456789",
 "uin2": "234567890"
}

	adoption

	
	source: identification of the system emitting the event

	uin of the child

	uin1 of the first parent

	uin2 of the second parent (optional)

Example:

{
 "source": "systemX",
 "uin": "123456789",
 "uin1": "234567890"
}

	legitimation

	
	source: identification of the system emitting the event

	uin of the child

	uin1 of the first parent

	uin2 of the second parent (optional)

Example:

{
 "source": "systemX",
 "uin": "987654321",
 "uin1": "123456789",
 "uin2": "234567890"
}

	recognition

	
	source: identification of the system emitting the event

	uin of the child

	uin1 of the first parent

	uin2 of the second parent (optional)

Example:

{
 "source": "systemX",
 "uin": "123456789",
 "uin2": "234567890"
}

	changeOfName

	
	source: identification of the system emitting the event

	uin of the person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	changeOfGender

	
	source: identification of the system emitting the event

	uin of the person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	updatePerson

	
	source: identification of the system emitting the event

	uin of the person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	newPerson

	
	source: identification of the system emitting the event

	uin of the person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	duplicatePerson

	
	source: identification of the system emitting the event

	uin of the person to be kept

	duplicates: list of uin for records identified as duplicates

Example:

{
 "source": "systemX",
 "uin": "123456789",
 "duplicates": [
 "234567890",
 "345678901"
]
}

Note

Anonymized notification of events will be treated separately.

Attention

Should the UIN be mandatory? What happens when a person has no UIN?

Matching Error

A list of:

Matching Error Object

	Attribute

	Type

	Description

	Mandatory

	attributeName

	String

	Attribute name (See Person Attributes)

	Yes

	errorCode

	32 bits integer

	Error code. Possible values: 0 (attribute does not exist); 1 (attribute exists but does not match)

	Yes

Expression

Expression Object

	Attribute

	Type

	Description

	Mandatory

	attributeName

	String

	Attribute name (See Person Attributes)

	Yes

	operator

	String

	Operator to apply. Possible values: <, >, =, >=, <=

	Yes

	value

	string, or integer, or boolean

	The value to be evaluated

	Yes

Error

Error Object

	Attribute

	Type

	Description

	Mandatory

	code

	32 bits integer

	Error code

	Yes

	message

	String

	Error message

	Yes

 HTTP Routing Table

 /v1

 		 	

 		
 /v1	

 	
 	
 GET /v1/persons	
 null

 	
 	
 GET /v1/persons/{uin}	
 null

 	
 	
 GET /v1/persons/{uin}/document	
 null

 	
 	
 POST /v1/persons/{uin}/match	
 null

 	
 	
 POST /v1/persons/{uin}/verify	
 null

 	
 	
 POST /v1/uin	

Index

 C
 | G
 | H
 | M
 | N
 | U
 | V

C

 	
 	CI

 	
 	CR

 	createUIN() (built-in function)

G

 	
 	getDocument() (built-in function)

 	
 	getPersonAttributes() (built-in function)

 	getPersonUIN() (built-in function)

H

 	
 	HTTP Status Codes

M

 	
 	matchPersonAttributes() (built-in function)

 	
 	Mime Types

N

 	
 	notify() (built-in function)

U

 	
 	UIN

V

 	
 	verifyPersonAttributes() (built-in function)

	
GET /v1/persons

	Retrieve a UIN based on a set of attributes.
This service is used when the UIN is unknown.

	Query Parameters

	
	attributes (object) – The attributes used to retrieve the UIN
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – All UIN found (a list of at least one UIN)

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid parameter

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – No UIN found

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

GET /v1/persons?firstName=John&lastName=Do HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 "1235567890"
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/persons/{uin}

	Retrieve attributes for a person.

	Parameters

	
	uin (string) – Unique Identity Number

	Query Parameters

	
	attributeNames (array) – The names of the attributes requested for this person
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Requested attributes values or Error description.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

GET /v1/persons/{uin}?attributeNames=firstName&attributeNames=lastName&attributeNames=dob HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "firstName": "John",
 "lastName": "Doo",
 "dob": {
 "code": 1023,
 "message": "Unknown attribute name"
 }
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/persons/{uin}/match

	Match person attributes.
This service is used to check the value of attributes without exposing private data.

The request body should contain a list of attributes and their value, formatted as a json dictionary.

	Parameters

	
	uin (string) – Unique Identity Number

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Information about non matching attributes. Returns a list of matching result (See Matching Error)
An empty list indicates all attributes were matching.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

POST /v1/persons/{uin}/match HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "firstName": "John",
 "lastName": "Doo",
 "dateOfBirth": "1984-11-19"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "attributeName": "firstName",
 "errorCode": 1
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/persons/{uin}/verify

	Evaluate expressions (See Expression) on person attributes.
This service is used to evaluate simple expressions on
person’s attributes without exposing private data

The request body should contain a list of Expression.

	Parameters

	
	uin (string) – Unique Identity Number

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The expressions are all true (true is returned) or one is false (false is returned)

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access. The service is forbidden or one of the attributes is forbidden.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

POST /v1/persons/{uin}/verify HTTP/1.1
Host: example.com
Content-Type: application/json

[
 {
 "attributeName": "firstName",
 "operator": "=",
 "value": "John"
 },
 {
 "attributeName": "dateOfBirth",
 "operator": "<",
 "value": "1990-12-31"
 }
]

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

true

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/persons/{uin}/document

	Retrieve in an unstructured format (PDF, image) a document such as a marriage certificate.

	Parameters

	
	uin (string) – Unique Identity Number

	Query Parameters

	
	secondaryUin (string) – Unique Identity Number of a second person linked to the requested document.
Example: wife, husband

	doctype (string) – The type of document
(Required)

	format (string) – The expected format of the document.
If the document is not available at this format, it must be converted.
TBD: one format for certificate data.
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The document(s) is/are found and returned, as binary data in a MIME multipart structure.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	415 Unsupported Media Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16] – Unsupported format

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

GET /v1/persons/{uin}/document?doctype=marriage&secondaryUin=234567890&format=pdf HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/uin

	Request the generation of a new UIN.

The request body should contain a list of attributes and their value, formatted as a json dictionary.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – UIN is generated

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

POST http://server.com/v1/uin HTTP/1.1
Host: server.com
Content-Type: application/json

{
 "firstName": "John",
 "lastName": "Doo",
 "dateOfBirth": "1984-11-19"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

1235567890

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

 _static/comment.png

_static/down-pressed.png

_images/plantuml-51eea5deb870417e01ee109fc613a6a99b9cb551.png
cr||a

UIN Generator|

CR can request a new UIN N

1 createlin(attributes])

|

Lo

' un

=

I can request anew UIN_ %

| cresteU(atiributes)

_static/file.png

_static/logo-secure-identity-alliance3.png

_images/plantuml-1222405a20ef38303c35807428165069004e49df.png
CR a

CR can notify CI of new events ™

1 notifytype UKD _!

I can notify CR of new events ™

1 notifyltypeUIND) |

_static/down.png

_images/plantuml-6234f9f1042c3f09f0d46996cb4b766872d94d2b.png
Mother or Father

CR

1 Checks

matchPersonattributes(mother attributes)

matchPersonattributes(father attributes)

oetpersonatiributes(mother)

oetpersonatributesifather)

etPersonUiN(new born attributes)

Addtionsl checks

e

createuing

a

UIN Generator|

[matchPersonAtributes(mother attibutes) |

postrersonatiroutesimother)
postrersonttiroutestfather)
pastferzertininen borr sttrbutes)l |

[[register the birth &

3. Notification

T ooty teithuma

getpersonatributes(new born)

etpersonatiributes(mother)

oetpersonatributesifather)

create/update identities

_static/up-pressed.png

_images/plantuml-5cb391334d7deebd0532b22d24e36bd788d28d0a.png
a CR
sesuplicatel)
notify(duplicate [UIN])
Inotfylduplicate [UN) |
Ll

_ setPersontributestut)

merge()

mergelregiter duplicate)

_static/minus.png

_static/plus.png

_images/plantuml-6aa5c0e69e3e6d4ac6d27c5ea075552fff5ff1a4.png
CR a

CRcan get UINfrom C1_ 1

1 getpersonUiN(lattributes]) !
ostrersonUiNllauributes]) |
o ;

Clcan get UIN from CR_ 1Y

| setPersonUN(attributes]) |
g

e 4

_images/plantuml-02e85a44ff40ce70b33b3bf7803f5efed27404bb.png
CR a

CR can match person's attributes in €I

| matchpersonatributes(UiN attributes]) |
matchPersonttributes(Ulatiributes]))

[— :

I can match person's attributes in CR ™)

| matchPersonattributes(UIN ttributes]) |

Ynvtreasons.

g

_images/plantuml-c5199cddd1c9c2df1d3945471b446a6a00d3909b.png
CR a

CR can verffy person's attributes in CI_ 1)

T ——
[——
Lw :

I can verify person's attributes in CR 1)

| < verifyPersonatributes(UiN expressions]) |
Y

! >

nav.xhtml

 Table of Contents

 		
 Open Source API Specification

 		
 Introduction

 		
 Revision History

 		
 Definitions

 		
 Functional Specifications

 		
 Hypothesis

 		
 Concepts

 		
 Interface

 		
 Functions/Sevices

 		
 Dictionaries

 		
 Use Cases

 		
 Birth Use Case

 		
 Death Use Case

 		
 Fœtal Death Use Case

 		
 Marriage Use Case

 		
 Divorce Use Case

 		
 Annulment Use Case

 		
 Separation Use Case

 		
 Adoption Use Case

 		
 Legitimation Use Case

 		
 Recognition Use Case

 		
 Change of Name/Gender Use Case

 		
 Transcription Use Case

 		
 Change of Nationality Use Case

 		
 Deduplication

 		
 Technical Specifications

 		
 Services

 		
 UIN Management

 		
 Data Access

 		
 Notifications

 		
 Data Model

 		
 Person Attributes

 		
 Notification Message

 		
 Matching Error

 		
 Expression

 		
 Error

_static/up.png

_images/plantuml-f77613c627951be4cdfaae4fff90151f0c5a8f62.png
CR a

CR can request person's attributes from €I

1 getpersonattributes(UiN [names]) |
ostrersonattributes(Uiilnames])

— :

I can request person's attributes from CR_™

| SetPersonattributes(UI [rames]) |

sttributes

-

_images/plantuml-dfea8d567bc30da9a95c8b8ed486da07ec209964.png
CR a

CRcan get a document from c1 1)

1 getDocument([UIN] documentType format) . !
(etbeemertilib ocebmertTyesfomats
i documents))

I can get a document from CR)

| SetDocument(IUIN] documentType format) |
Ldocuments]

g

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

