

OSIA Specification

	1. Introduction
	1.1. Problem Statement: vendor lock-in

	1.2. The OSIA Initiative

	1.3. Diffusion, Audience, and Access

	1.4. Document Overview

	1.5. Convention and Typographical Rules

	1.6. Revision History

	2. Functional View
	2.1. Components: Standardized Definition and Scope

	2.2. Interfaces

	2.3. Components vs Interfaces Mapping

	2.4. Use Cases - How to Use OSIA
	2.4.1. Birth Use Case

	2.4.2. Death Use Case

	2.4.3. Marriage Use Case

	2.4.4. Deduplication

	2.4.5. ID Card Request

	2.4.6. Bank account opening Use Case

	2.4.7. Police identity control Use Cases

	3. Security & Privacy
	3.1. Introduction

	3.2. Virtual UIN

	3.3. Authorization

	3.4. GDPR

	4. OSIA Versions & Referencing

	5. Interfaces
	5.1. Notification
	5.1.1. Services

	5.1.2. Dictionaries

	5.2. Data Access
	5.2.1. Services

	5.2.2. Dictionaries

	5.3. UIN Management
	5.3.1. Services

	5.4. Biometrics
	5.4.1. Services

	5.4.2. Options

	5.4.3. Data Model

	5.5. Document Services

	5.6. Third Party Services
	5.6.1. Services

	6. Components
	6.1. Enrolment Component

	6.2. Population Registry
	6.2.1. Notification

	6.2.2. Data Access

	6.3. Civil Registry
	6.3.1. Notification

	6.3.2. Data Access

	6.4. UIN Generator
	6.4.1. UIN Management

	6.5. ABIS
	6.5.1. Biometrics

	6.6. Document Management System

	6.7. Third Party
	6.7.1. Third Party Services

	7. Annexes
	7.1. Glossary

	7.2. Data Format

	7.3. Technical Specifications
	7.3.1. Notification

	7.3.2. UIN Management

	7.3.3. Data Access

	7.3.4. Biometrics

	7.3.5. Third Party Services

1. Introduction

1.1. Problem Statement: vendor lock-in

Target 16.9 of the UN Sustainable Development Goals is to “provide legal identity for all, including birth registration”
by the year 2030. But there is a major barrier: the lack of vendor/provider and technology neutrality - commonly
known as “vendor lock-in”.

The lack of partner and technology neutrality and its consequences becomes apparent when a customer needs to
replace one component of the identity management solution with one from another provider, or expand the scope
of their solution by linking to new components. Technology barriers are the following:

	Solution architectures are not interoperable by design. The lack of common definitions as to the overall
scope of an identity ecosystem, as well as in the main functionalities of a system’s components (civil registry,
biometric identification system, population registry etc.), blurs the lines between components and leads to
inconsistencies. This lack of so-called irreducibly modular architectures makes it difficult,
if not impossible, to switch to a third-party component intended to provide the same function and
leads to incompatibilities when adding a new component to an existing ecosystem.

	Standardized interfaces (APIs) do not exist. Components are often unable to communicate with each
other due to varying interfaces (APIs) and data formats, making it difficult to swap out components
or add new ones to the system.

For government policy makers tasked with implementing national identification systems, vendor lock-in
is now one of their biggest concerns.

[image: _images/vendorlockin.svg]Fig. 1.1 Vendor Lock-In

1.2. The OSIA Initiative

Launched by the not-for-profit Secure Identity Alliance, Open Standard Identity APIs (OSIA) is an
initiative created for the public good to address vendor lock-in problem.

OSIA addresses the vendor lock-in concern by providing a simple, open standards-based connectivity layer
between all key components within the national identity ecosystem.

OSIA scope is as follows:

1. Address the lack of common definitions within the identity ecosystem – NON PRESCRIPTIVE

Components of the identity ecosystem (civil registry, population registry, biometric identification system etc.)
from different vendors are functionally incompatible due to the absence of a common definition/understanding of
broader functionalities and scope.

OSIA first step has been to formalize definitions, scope and main functionalities of each component
within the identity ecosystem.

2. Create a set of standardized interfaces – PRESCRIPTIVE

This core piece of work develops the set of interfaces and standardized data formats to connect the multiple
identity ecosystem components to ensure seamless interaction via pre-defined services.

Process of interaction among components (hence type of services each component implements) is down to each government
to define and implement according to local laws and regulations.

With OSIA, governments are free to select the components they need, from the suppliers
they choose – without fear of lock in.

And because OSIA operates at the interface layer, interoperability is assured without the need to rearchitect
environments or rebuild solutions from the ground up. ID ecosystem components are simply swapped in and out
as the use case demands – from best-of-breed options already available on the market.

This real-world approach dramatically reduces operational and financial risk, increases the effectiveness of
existing identity ecosystems, and rapidly moves government initiatives from proof of concept to live environments.

1.3. Diffusion, Audience, and Access

This specification is hosted in GitHub [https://github.com/SecureIdentityAlliance/osia] and can be
downloaded from ReadTheDocs [https://osia.readthedocs.io/en/latest/].

This specification is licensed under The MIT License [https://opensource.org/licenses/MIT].

Any country, technology partner or individual is free to download the functional and technical specifications
to implement it in their customized foundational and sectoral ID systems or components.
Governments can also reference OSIA as Open Standards in tenders.
For more information on how to reference OSIA please see Section OSIA Versions & Referencing.

1.4. Document Overview

This document aims at:

	formalizing definitions, scope and main functionalities of each component within the identity ecosystem,

	defining standardized interface and data format to connect the multiple ecosystem components to ensure
seamless interaction via pre-defined services.

This document is structured as follows:

	Chapter 1 Introduction

	Chapter 2 Functional View

	Chapter 3 Security and Privacy

	Chapter 4 OSIA Versions and Referencing

	Chapter 5 Interfaces

	Chapter 6 Components

1.5. Convention and Typographical Rules

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” in this document are to be interpreted as described in RFC 2119 [http://www.ietf.org/rfc/rfc2119.txt].

Code samples highlighted in blocks appear like that:

{
 "key": "value",
 "another_key": 23
}

Note

Indicates supplementary explanations and useful tips.

Warning

Indicates that the specific condition or procedure must be
respected.

1.6. Revision History

	Version

	Date

	Notes

	1.0

	2018-12

	First release

	2.0

	2019-06

	Second release

2. Functional View

2.1. Components: Standardized Definition and Scope

OSIA provides seamless interconnection between multiple components part of the identity ecosystem.

The components are defined as follows:

	The Enrolment component. Enrollment is defined as a system to register biographic and
biometric data of individuals.

	The Population Registry (PR) component.

Population registry is defined as “an individualized data system, that is, a mechanism of continuous recording,
or of coordinated linkage, of selected information pertaining to each member of the resident population
of a country in such a way to provide the possibility of determining up-to-date information concerning
the size and characteristics of that population at selected time intervals. The population register is
the product of a continuous process, in which notifications of certain events, which may have been
recorded originally in different administrative systems, are automatically linked on a current basis.
A. method and sources of updating should cover all changes so that the characteristics of individuals in the
register remain current. Because of the nature of a population register, its organization, and also
its operation, must have a legal basis.” 1

	The UIN Generator component. UIN generator is defined as a system to generate and manage unique identifiers.

	The Automated Biometric Identification System (ABIS) component. An ABIS is defined as a system to detect
the identity of an individual when it is unknown, or to verify the individual’s identity when it is
provided, through biometrics.

	The Civil Registry (CR) component.

Civil registration is defined as “the continuous, permanent, compulsory and universal recording of the occurrence
and characteristics of vital events pertaining to the population, as provided through decree or regulation
is accordance with the legal requirement in each country.
Civil registration is carried out primarily for the purpose of establishing the documents provided by the law.” 2

	The Document Management System (DMS) component. DMS is defined as a system to manage the production and
issuance of physical documents like ID Cards, passports, driving licenses, etc.

	The Third Parties Services component.

Table 2.1 Components

	ID Ecosystem Component

	Data

	Functions

	Enrollment

	
	Alpha*

	UIN*

	History*

	Supporting documents*

	
	Recording application

	Collecting personal data

	PR

	
	Alpha

	UIN

	History

	Supporting documents

	
	Identity attributes storage

	Identity Life cycle management

	UIN Gen

	
	Alpha

	UIN

	
	UIN generation

	ABIS

	
	UIN

	Biometric data (images and templates)

	
	Authentication (1:1)

	Identification (1:N)

	Quality control and adjudication

	CR

	
	Events

	UIN

	History

	Supporting documents

	
	Events storage

	Certificate production

	Workflow

	DMS

	
	Alpha

	UIN

	History

	Supporting documents

	
	Document data storage

	Document Life cycle management

	Document Production

	Workflow

	SMS and email server

	Third Parties Services

	TBD

	KYC/auth

The components are represented on the following diagram:

[image: _images/components.svg]Fig. 2.1 Components

2.2. Interfaces

To do

This chapter describes the following interfaces.

	UIN management. This interface can be implemented by PR, by CR or by another system. We will consider it is provided
by a system called UIN Generator.

	Notifications. When data is changed, a notification is sent and received by systems that registered for
this type of events. For instance, PR can register for the events birth emitted by CR.

	Data access. A set of services to access data.

The design is based on the following assumptions:

	All persons recorded in a registry have a UIN. The UIN can be used as a key to access person data for all records.

	The registries (civil, population, or other) are considered as centralized systems that are connected. If one registry
is architectured in a decentralized way, one of its component must be centralized, connected to
the network, and in charge of the exchanges with the other registries.

	Since the registries are customized for each business needs, dictionaries must be explicitly
defined to describe the attributes, the event types, and the document types. See Data Access
for samples of those dictionaries.

	The relationship parent/child is not mandatory in the population registry. A population registry implementation may
manage this relationship or may ignore it and rely on the civil registry to manage it.

	All persons are stored in the population registry. There is no record in the civil registry that is not also in
the population registry.

	Biometrics.

	Third party. Identity based services implemented on top of Identity system mainly Identity Verification and
Identity Attribute sharing.

2.3. Components vs Interfaces Mapping

The interfaces described in this chapter are summarized in the following table:

Table 2.2 Components vs Interfaces Mapping

	
	Components

	Interfaces

	Enroll

	PR

	UIN gen.

	ABIS

	CR

	ID Card

	Funct. Reg

	Third Parties

	Notifications

	Notify event

	
	U

	
	
	U

	
	
	

	Subscribe

	
	U

	
	U

	U

	U

	U

	

	Unsubscribe

	
	U

	
	U

	U

	U

	U

	

	Event callback

	
	I

	
	I

	I

	I

	I

	

	UIN Management

	Generate UIN

	
	U

	I

	
	U

	U

	
	

	Data Access

	Get Person Attributes

	U

	IU

	
	U

	IU

	U

	U

	U

	Match Person Attributes

	
	IU

	
	
	IU

	U

	U

	U

	Verify Person Attributes

	
	IU

	
	
	IU

	U

	U

	U

	Get Person UIN

	U

	IU

	
	
	IU

	U

	U

	

	Get document

	
	IU

	
	
	IU

	
	
	

	Biometrics

	Verify

	U

	
	
	I

	
	U

	U

	U

	Identify

	U

	
	
	I

	
	U

	U

	U

	Insert

	
	U

	
	I

	
	U

	
	

	Read

	
	U

	
	I

	
	U

	U

	U

	Update

	
	U

	
	I

	
	U

	
	

	Delete

	
	U

	
	I

	
	U

	
	

	Get Gallery

	
	U

	
	I

	
	U

	U

	

	Get Gallery content

	
	U

	
	I

	
	U

	U

	

	Third Party Services

	Verify ID

	
	
	
	
	
	
	
	I

	Identify ID

	
	
	
	
	
	
	
	I

	Get Attributes

	
	
	
	
	
	
	
	I

	Get Attributes set

	
	
	
	
	
	
	
	I

where:

	I is used when a service is implemented (provided) by a component

	U is used when a service is used (consumed) by a component

2.4. Use Cases - How to Use OSIA

Introduction to be done

2.4.1. Birth Use Case

[image: !include "skin.iwsd" hide footbox actor "Mother or Father" as parent participant "CR" as CR participant "PR" as PR participant "UIN Generator" as UINGen parent -> CR activate parent activate CR group 1. Checks CR -> PR: matchPersonAttributes(mother attributes) CR -> PR: matchPersonAttributes(father attributes) CR -> PR: getPersonAttributes(mother) CR -> PR: getPersonAttributes(father) CR -> PR: getPersonUIN(new born attributes) CR -> CR: Additional checks end group 2. Creation CR -> UINGen: createUIN() CR -> CR note right: register the birth CR -->> parent: certificate destroy parent end group 3. Notification CR ->> PR: notify(birth,UIN) deactivate CR ... PR -> CR: getPersonAttributes(new born) activate PR PR -> CR: getPersonAttributes(mother) PR -> CR: getPersonAttributes(father) PR -> PR note right: create/update identities deactivate PR end]

Fig. 2.2 Birth Use Case

	Checks

When a request is submitted, the CR may run checks against the data available in the PR using:

	matchPersonAttributes: to check the exactitude of the parents’ attributes as known in the PR

	getPersonAttributes: to get missing data about the parents’s identity

	getPersonUIN: to check if the new born is already known to PR or not

How the CR will process the request in case of data discrepancy is specific to each CR implementation
and not in the scope of this document.

	Creation

The birth is registered in the CR. The first step after the checks is to generate a new UIN
a call to createUIN.

	Notification

As part of the birth registration, it is the responsibility of the CR to notify other systems, including the PR,
of this event using:

	notify: to send a birth along with the new UIN.

The PR, upon reception of the birth event, will update the identity registry with this new identity using:

	getPersonAttributes: to get the attributes of interest to the PR for the parents and the new child.

2.4.2. Death Use Case

To be completed

2.4.3. Marriage Use Case

To be completed

2.4.4. Deduplication

During the lifetime of a registry, it is possible that duplicates are detected. This can happen for instance
after the addition of biometrics in the system. When a registry considers that two records are actually the same
and decides to merge them, a notification must be sent.

[image: !include "skin.iwsd" hide footbox participant "PR" as PR participant "CR" as CR PR -> PR: deduplicate() activate PR PR ->> CR: notify(duplicate,[UIN]) deactivate PR ... CR -> PR: getPersonAttributes(UIN) activate CR activate PR CR -> CR: merge() deactivate PR note right: merge/register duplicate deactivate CR]

Fig. 2.3 Deduplication Use Case

How the target of the notification should react is specific to each subsystem.

2.4.5. ID Card Request

To be completed

2.4.6. Bank account opening Use Case

[image: !include "skin.iwsd" hide footbox actor "Citizen" as citizen actor "Bank attendant" as bank participant "Third Party" as usage participant "PR" as PR citizen -> bank : Go to agency activate citizen activate bank group 1. Verify Identity citizen -> bank : UIN + Biometrics deactivate citizen activate usage bank -> usage : verifyIdentity(UIN, biometric or civil data or credential) usage -> bank : Y/N bank -> bank : create account for UIN end group 2. Get certified Attributes bank -> usage : getAttributeSet (UIN, attribute set name) usage -> PR : getPersonAttributes(UIN) usage -> bank : List of attributes values note right: fill-in attributes in bank account end deactivate citizen deactivate bank]

Fig. 2.4 Bank account opening Use Case

2.4.7. Police identity control Use Cases

[image: !include "skin.iwsd" hide footbox actor "Citizen" as citizen actor "Policeman" as police participant "Third Party" as usage participant "ABIS" as ABIS participant "PR" as PR citizen -> police : Show ID card citizen -> police : Capture fingerprint activate citizen activate police group 1. Verify Identity citizen -> police : UIN + Biometrics deactivate citizen activate usage police -> usage : verifyIdentity(UIN, biometric or civil data or credential) usage -> police : Y/N end group 2. Show corresponding attributes police -> usage : getAttributeSet (UIN1, attribute set name) usage -> PR : getPersonAttributes(UIN1) usage -> police : List of attributes values police -> usage : getAttributeSet (UIN2, attribute set name) usage -> PR : getPersonAttributes(UIN2) usage -> police : List of attributes values police -> usage : getAttributeSet (UIN3, attribute set name) usage -> PR : getPersonAttributes(UIN3) usage -> police : List of attributes values note right: display attributes for each candidates end]

Fig. 2.5 Collaborative identity control

Footnotes

	1

	Handbook on Civil Registration and Vital Statistics Systems: Management, Operation and Maintenance,
Revision 1, United Nations, New York, 2018, available at:
https://unstats.un.org/unsd/demographic-social/Standards-and-Methods/files/Handbooks/crvs/crvs-mgt-E.pdf , para 65.

	2

	Principles and Recommendations for a Vital Statistics System, United Nations publication
Sales Number E.13.XVII.10, New York, 2014, paragraph 279

3. Security & Privacy

3.1. Introduction

Insert diagram of security & privacy features

3.2. Virtual UIN

Explain: using a different UIN in each subsystem - no direct/easy
links between the records in different subsystems

3.3. Authorization

To be completed

3.4. GDPR

To be completed

4. OSIA Versions & Referencing

There will be a version for each interface.
Each interface can be referenced in tenders as follows:

OSIA - [interface name] v. [version number]

For instance below is the string to reference the Notification interface:

OSIA - Notification v. 1.0

Below is the complete list of available interfaces with related version to date:

	OSIA - Notifications - v. 1.0

	OSIA - UIN Management - v. 1.0

	OSIA - Data Access - v. 1.0

	OSIA - Biometrics - v. 1.0

	OSIA - Third Party Services - v. 1.0

This document proposes as well a set of interfaces that could be used by each component (non-prescriptive).

As a consequence, it is possible to reference directly that set of interfaces bundled with a given component.
It is possible to reference the bundle of these interfaces as follows:

OSIA – [component name] v. [version number]

For instance for Civil Registry (CR) OSIA proposes the following set of interfaces:

	OSIA - Notifications - v. 1.0

	OSIA - Data Access - v. 1.0

Below is the string to reference this set of interfaces linked to CR:

OSIA – CR v. 1.0

5. Interfaces

5.1. Notification

See Notification for the technical details of this interface.

The subscription & notification process is managed by a middleware and is described
in the following diagram:

[image: !include "skin.iwsd" hide footbox participant "Emitter" as PR participant "Notification\nEngine" as N participant "Subscriber" as CR note over PR,N: First step is to create the topic PR -> N: create_topic(name) activate PR activate N N --> PR: uuid deactivate N deactivate PR note over N,CR: Then a system can subscribe for events published on that topic CR -> N: subscribe(topic,URL) activate CR activate N N --> CR: id deactivate CR deactivate N ... later ... note over N,CR: confirm the address before the subscription is active N -> CR: notify(token) activate N activate CR CR -> N: subscribe_CB(token) activate N #FFBBB N --> CR: ok deactivate N CR --> N: ok deactivate CR deactivate N note over PR,CR: it is now possible to publish notification PR -> N: publish(message) activate PR activate N N -> N: store N --> PR: ok deactivate PR ... loop subscriptions N -> CR: subscribe_CB(message) activate CR CR --> N: ok deactivate CR end deactivate N]

Fig. 5.1 Subscription & Notification Process

5.1.1. Services

	
subscribe(topic, URL)

	Subscribe a URL to receive notifications sent to one topic

	Parameters

	
	topic (str) – Topic

	URL (str) – URL to be called when a notification is available

	Returns

	a subscription ID

This service is synchronous.

	
unsubscribe(id)

	Unsubscribe a URL from the list of receiver for one topic

	Parameters

	id (str) – Subscription ID

	Returns

	bool

This service is synchronous.

	
confirm(token)

	Confirm that the URL used during the subscription is valid

	Parameters

	token (str) – A token send through the URL.

	Returns

	bool

This service is synchronous.

	
publish(topic, subject, message)

	Notify of a new event all systems that subscribed to this topic

	Parameters

	
	topic (str) – Topic

	subject (str) – The subject of the message

	message (str) – The message itself (a string buffer)

	Returns

	N/A

This service is asynchronous (systems that subscribed on this topic are notified asynchronously).

5.1.2. Dictionaries

As an example, below there is a list of events that each component might handle.

Table 5.1 Event Type

	Event Type

	Emitted by CR

	Emitted by PR

	Live birth

	✔

	

	Death

	✔

	

	Fœtal Death

	✔

	

	Marriage

	✔

	

	Divorce

	✔

	

	Annulment

	✔

	

	Separation, judicial

	✔

	

	Adoption

	✔

	

	Legitimation

	✔

	

	Recognition

	✔

	

	Change of name

	✔

	

	Change of gender

	✔

	

	New person

	
	✔

	Duplicate person

	✔

	✔

5.2. Data Access

See Data Access for the technical details of this interface.

5.2.1. Services

	
getPersonAttributes(UIN, names)

	Retrieve person attributes.

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	names (list[str]) – The names of the attributes requested

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can request person's attributes from PR CR -> PR: getPersonAttributes(UIN,[names]) PR -->> CR: attributes note over CR,PR: PR can request person's attributes from CR PR -> CR: getPersonAttributes(UIN,[names]) CR -->> PR: attributes]

Fig. 5.2 getPersonAttributes Sequence Diagram

	
matchPersonAttributes(UIN, attributes)

	Match person attributes. This service is used to check the value of attributes without exposing private data

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	attributes (list[(str,str)]) – The attributes to match. Each attribute is described with its name and the expected value

	Returns

	If all attributes match, a Yes is returned. If one attribute does not match, a No is returned along with a list of (name,reason) for each non-matching attribute.

This service is synchronous. It can be used to match attributes in CR or in PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can match person's attributes in PR CR -> PR: matchPersonAttributes(UIN,[attributes]) PR -->> CR: Y/N+reasons note over CR,PR: PR can match person's attributes in CR PR -> CR: matchPersonAttributes(UIN,[attributes]) CR -->> PR: Y/N+reasons]

Fig. 5.3 matchPersonAttributes Sequence Diagram

	
verifyPersonAttributes(UIN, expressions)

	Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s attributes
without exposing private data

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	expressions (list[(str,str,str)]) – The expressions to evaluate. Each expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=) and the attribute value

	Returns

	A Yes if all expressions are true, a No if one expression is false, a Unknown if To be defined

This service is synchronous. It can be used to verify attributes in CR or in PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can verify person's attributes in PR CR -> PR: verifyPersonAttributes(UIN,[expressions]) PR -->> CR: Y/N/U note over CR,PR: PR can verify person's attributes in CR PR -> CR: verifyPersonAttributes(UIN,[expressions]) CR -->> PR: Y/N/U]

Fig. 5.4 verifyPersonAttributes Sequence Diagram

	
getPersonUIN(attributes)

	Retrieve UIN based on a set of attributes. This service is used when the UIN is unknown.

Authorization: To be defined

	Parameters

	attributes (list[(str,str)]) – The attributes to be used to find UIN. Each attribute is described with its name and its value

	Returns

	a list of matching UIN

This service is synchronous. It can be used to get the UIN of a person.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can get UIN from PR CR -> PR: getPersonUIN([attributes]) PR -->> CR: [UIN] note over CR,PR: PR can get UIN from CR PR -> CR: getPersonUIN([attributes]) CR -->> PR: [UIN]]

Fig. 5.5 getPersonUIN Sequence Diagram

	
getDocument(UINs, documentType, format)

	Retrieve in a selected format (PDF, image, …) a document such as a marriage certificate.

Authorization: To be defined

	Parameters

	
	UIN (list[str]) – The list of UINs for the persons concerned by the document

	documentType (str) – The type of document (birth certificate, etc.)

	format (str) – The format of the returned/requested document

	Returns

	The list of the requested documents

This service is synchronous. It can be used to get the documents for a person.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can get a document from PR CR -> PR: getDocument([UIN],documentType,format) PR -->> CR: [documents] note over CR,PR: PR can get a document from CR PR -> CR: getDocument([UIN],documentType,format) CR -->> PR: [documents]]

Fig. 5.6 getDocument Sequence Diagram

5.2.2. Dictionaries

As an example, below there is a list of attributes/documents that each component might handle.

Table 5.2 Person Attributes

	Attribute Name

	In CR

	In PR

	Description

	UIN

	✔

	✔

	

	first name

	✔

	✔

	

	last name

	✔

	✔

	

	spouse name

	✔

	✔

	

	date of birth

	✔

	✔

	

	place of birth

	✔

	✔

	

	gender

	✔

	✔

	

	date of death

	✔

	✔

	

	place of death

	✔

	
	

	reason of death

	✔

	
	

	status

	
	✔

	Example: missing, wanted, dead, etc.

Table 5.3 Certificate Attributes

	Attribute Name

	In CR

	In PR

	Description

	officer name

	✔

	
	

	number

	✔

	
	

	date

	✔

	
	

	place

	✔

	
	

	type

	✔

	
	

Table 5.4 Union Attributes

	Attribute Name

	In CR

	In PR

	Description

	date of union

	✔

	
	

	place of union

	✔

	
	

	conjoint1 UIN

	✔

	
	

	conjoint2 UIN

	✔

	
	

	date of divorce

	✔

	
	

Table 5.5 Filiation Attributes

	Attribute Name

	In CR

	In PR

	Description

	parent1 UIN

	✔

	
	

	parent2 UIN

	✔

	
	

Table 5.6 Document Type

	Document Type

	Description

	birth certificate

	To be completed

	death certificate

	To be completed

	marriage certificate

	To be completed

5.3. UIN Management

See UIN Management for the technical details of this interface.

5.3.1. Services

	
createUIN(attributes)

	Generate a new UIN.

Authorization: To be defined

	Parameters

	attributes (list[(str,str)]) – A list of pair (attribute name, value) that can be used to allocate a new UIN

	Returns

	a new UIN or an error if the generation is not possible

This service is synchronous.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR participant "UIN Generator" as UIN note over CR,UIN: CR can request a new UIN CR -> UIN: createUIN([attributes]) UIN -->> CR: UIN note over PR,UIN: PR can request a new UIN PR -> UIN: createUIN([attributes]) UIN -->> PR: UIN]

Fig. 5.7 createUIN Sequence Diagram

5.4. Biometrics

This interface is described biometric services in the context of an identity system. It is based on
the following principles:

	It supports only multi-encounter model, meaning that an identity can have multiple set of biometric data,
one for each encounter.

	It does not expose templates (only images) for CRUD services, with one exception to support
the use case of documents with biometrics.

	Images can be passed by value or reference. When passed by value, they are base64-encoded.

	Existing standards are used whenever possible, for instance image preferred format is ISO-19794.

Note

Synchronous and Asynchronous Processing

Some services can be very slow depending on the algorithm used, the system workload, etc.
Services are described so that:

	If possible, the answer is provided synchronously in the response of the service.

	If not possible for some reason, a status PENDING is returned and the answer, when available, is
pushed to a callback provided by the client.

If no callback is provided, this indicates that the client wants a synchronous answer, whatever the time it takes.

If a callback is provided, the server will decide if the processing is done synchronously or asynchronously.

See Biometrics for the technical details of this interface.

5.4.1. Services

	
insert(subjectID, encounterID, galleryID, biographicData, contextualData, biometricData, clientData, callback, options)

	Insert a new encounter. No identify is performed. This service is synchronous.

Authorization: To be defined

	Parameters

	
	subjectID (str) – The subject ID

	encounterID (str) – The encounter ID. This is optional

	galleryID (list(str)) – the gallery ID to which this encounter belongs

	biographicData (dict) – The biographic data (ex: name, date of birth, gender, etc.)

	contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

	biometricData (list) – the biometric data (images)

	clientData (bytes) – additional data not interpreted by the server but stored as is and returned
when encounter data is requested.

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority, algorithm.

	Returns

	a status indicating success, error, or pending operation.
In case of success, the subject ID and the encounter ID are returned.
In case of pending operation, the result will be sent later.

	
read(subjectID, encounterID, callback, options)

	Retrieve the data of an encounter.

Authorization: To be defined

	Parameters

	
	subjectID (str) – The subject ID

	encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the subject are returned.

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority.

	Returns

	a status indicating success, error, or pending operation.
In case of success, the encounter data is returned.
In case of pending operation, the result will be sent later.

	
update(subjectID, encounterID, galleryID, biographicData, contextualData, biometricData, callback, options)

	Update an encounter.

Authorization: To be defined

	Parameters

	
	subjectID (str) – The subject ID

	encounterID (str) – The encounter ID

	galleryID (list(str)) – the gallery ID to which this encounter belongs

	biographicData (dict) – The biographic data (ex: name, date of birth, gender, etc.)

	contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

	biometricData (list) – the biometric data (images)

	clientData (bytes) – additional data not interpreted by the server but stored as is and returned
when encounter data is requested.

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority, algorithm.

	Returns

	a status indicating success, error, or pending operation.
In case of success, the subject ID and the encounter ID are returned.
In case of pending operation, the result will be sent later.

	
delete(subjectID, encounterID, callback, options)

	Delete an encounter.

Authorization: To be defined

	Parameters

	
	subjectID (str) – The subject ID

	encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the subject are deleted.

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority.

	Returns

	a status indicating success, error, or pending operation.
In case of pending operation, the operation status will be sent later.

	
getTemplate(subjectID, encounterID, biometricType, biometricSubType, callback, options)

	Retrieve the data of an encounter.

Authorization: To be defined

	Parameters

	
	subjectID (str) – The subject ID

	encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the subject are returned.

	biometricType (str) – The type of biometrics to consider

	biometricSubType (str) – The subtype of biometrics to consider

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority.

	Returns

	a status indicating success, error, or pending operation.
In case of success, a list of template data is returned.
In case of pending operation, the result will be sent later.

	
identify(galleryID, filter, biometricData, callback, options)

	Identify a subject using biometrics data and filters on biographic or contextual data. This may include multiple
operations, including manual operations.

Authorization: To be defined

	Parameters

	
	galleryID (str) – Search only in this gallery.

	filter (dict) – The input data (filters and biometric data)

	biometricData – the biometric data.

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority,
maxNbCand, threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A list of candidates is returned, either synchronously or using the callback.

	
identify(galleryID, filter, subjectID, callback, options)

	Identify a subject using biometrics data of a subject existing in the system and filters on biographic or
contextual data. This may include multiple operations, including manual operations.

Authorization: To be defined

	Parameters

	
	galleryID (str) – Search only in this gallery.

	filter (dict) – The input data (filters and biometric data)

	subjectID – the subject ID

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority,
maxNbCand, threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A list of candidates is returned, either synchronously or using the callback.

	
verify(galleryID, subjectID, biometricData, callback, options)

	Verify an identity using biometrics data.

Authorization: To be defined

	Parameters

	
	galleryID (str) – Search only in this gallery. If the subject does not belong to this gallery,
an error is returned.

	subjectID (str) – The subject ID

	biometricData – The biometric data

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority,
threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A status (boolean) is returned, either synchronously or using the callback. Optionally, details
about the matching result can be provided like the score per biometric and per encounter.

	
verify(biometricData1, biometricData2, callback, options)

	Verify that two sets of biometrics data correspond to the same subject.

Authorization: To be defined

	Parameters

	
	biometricData1 – The first set of biometric data

	biometricData2 – The second set of biometric data

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority,
threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A status (boolean) is returned, either synchronously or using the callback. Optionally, details
about the matching result can be provided like the score per the biometric.

	
getGalleries(callback, options)

	Get the ID os all the galleries.

Authorization: To be defined

	Parameters

	
	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority.

	Returns

	a status indicating success, error, or pending operation.
A list of gallery ID is returned, either synchronously or using the callback.

	
getGalleryContent(galleryID, callback, options)

	Get the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: To be defined

	Parameters

	
	galleryID (str) – Gallery whose content will be returned.

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority.

	Returns

	a status indicating success, error, or pending operation.
A list of subjects/encounters is returned, either synchronously or using the callback.

5.4.2. Options

Table 5.7 Biometric Services Options

	Name

	Description

	transactionID

	A string provided by the client application to identity the request being submitted.
It is optional in most cases. When provided, it can be used for tracing and debugging.
It is mandatory for asynchronous services and is included in the response pushed asynchronously.

	priority

	Priority of the request. Values range from 0 to 9

	maxNbCand

	The maximum number of candidates to return.

	threshold

	The threshold to apply on the score to filter the candidates during an identification,
authentication or verification.

	algorithm

	Specify the type of algorithm to be used.

	accuracyLevel

	Specify the accuracy expected of the request. This is to support different use cases, when
different behavior of the ABIS is expected (response time, accuracy, consolidation/fusion, etc.).

5.4.3. Data Model

Table 5.8 Biometric Data Model

	Type

	Description

	Example

	Gallery

	A group of subjects related by a common purpose, designation, or status.
A subject can belong to multiple galleries.

	TBD

	Subject

	Person who is known to an identity assurance system.

	TBD

	Encounter

	Event in which the client application interacts with a subject resulting in data being
collected during or about the encounter. An encounter is characterized by an identifier and a type
(also called purpose in some context).

	TBD

	Biographic Data

	a dictionary (list of names and values) giving the biographic data of interest for the biometric services.

	TBD

	Filters

	a dictionary (list of names and values or range of values) describing the filters during a search.
Filters can apply on biographic data, contextual data or encounter type.

	TBD

	Biometric Data

	Digital representation of biometric characteristics.
As an example, a record containing the image of a finger is a biometric data.
All images can be passed by value (image buffer is in the request) or by reference (the address of the
image is in the request).
All images are compliant with ISO 19794. ISO 19794 allows multiple encoding and supports additional
metadata specific to fingerprint, palmprint, portrait or iris.

	TBD

	Candidate

	Information about a candidate found during an identification

	TBD

	CandidateScore

	Detailed information about a candidate found during an identification. It includes
the score for the biometrics used.

	TBD

	Template

	A computed buffer corresponding to a biometric and allowing the comparison of biometrics.
A template has a format that can be a standard format or a vendor-specific format.

	N/A

[image: !include "skin.iwsd" class Gallery { string galleryID; } class Subject { string subjectID; } Subject "*" - "*" Gallery class Encounter { string encounterID; string encounterType; byte[] clientData; } Subject o-- "*" Encounter class BiographicData { string field1; int field2; date field3; ... } Encounter o- BiographicData class ContextualData { string field1; int field2; date field3; ... } ContextualData -o Encounter class Filters { string filter1; int filter2Min; int filter2Max; date filter3Min; date filter3Max; ... } class BiometricData { } Encounter o-- "*" BiometricData class Template { byte[] buffer; string format; } class Finger { byte[] fingerImage; URL fingerImageRef; } BiometricData <|-- Finger class Palm { byte[] palmImage; URL palmImageRef; } BiometricData <|-- Palm class Portrait { byte[] portraitImage; URL portraitImageRef; } BiometricData <|-- Portrait class Iris { byte[] irisImage; URL irisImageRef; } BiometricData <|-- Iris Finger -- Template Palm -- Template Portrait -- Template Iris -- Template class Candidate { int rank; int score; } Candidate . Subject class CandidateScore { int score; string encounterID; enum biometricType; enum biometricSubType; } Candidate -- "*" CandidateScore]

Fig. 5.8 Biometric Data Model

5.5. Document Services

To be defined

5.6. Third Party Services

5.6.1. Services

	
verifyIdentity(UIN[, IDAttribute])

	Verify Identity based on UIN and set of Identity Attributes.
Attributes can be Biometric data, Civil data or a credential.

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	IDAttribute (list[str]) – A list of list of pair (name,value) requested

	Returns

	Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

	
identify([inIDAttribute][, outIDAttribute])

	Identify a person based on a set of inIDAttribute Identity Attributes.
Attributes can be Biometric data, Civil data or a credential.
Returns list of identities with attributes specified in outIDAttribute

Authorization: To be defined

	Parameters

	
	inIDAttribute (list[str]) – A list of list of pair (name,value) requested

	outIDAttribute (list[str]) – A list of list of attribute names requested

	Returns

	Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

	
getAttributes(UIN, names)

	Retrieve person attributes.

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	names (list[str]) – The names of the attributes requested

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.)
the value is replaced with an error

	
getAttributeSet(UIN, setName)

	Retrieve person attributes corresponding to a predefined set name.

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	setName (str) – The name of predefined attributes set name

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.)
the value is replaced with an error

6. Components

This chapter describes for each component the interfaces that it must implement.

6.1. Enrolment Component

6.2. Population Registry

The population registry component MAY implement the following interfaces:

6.2.1. Notification

See Notification for the technical details of this interface.

The subscription & notification process is managed by a middleware and is described
in the following diagram:

[image: !include "skin.iwsd" hide footbox participant "Emitter" as PR participant "Notification\nEngine" as N participant "Subscriber" as CR note over PR,N: First step is to create the topic PR -> N: create_topic(name) activate PR activate N N --> PR: uuid deactivate N deactivate PR note over N,CR: Then a system can subscribe for events published on that topic CR -> N: subscribe(topic,URL) activate CR activate N N --> CR: id deactivate CR deactivate N ... later ... note over N,CR: confirm the address before the subscription is active N -> CR: notify(token) activate N activate CR CR -> N: subscribe_CB(token) activate N #FFBBB N --> CR: ok deactivate N CR --> N: ok deactivate CR deactivate N note over PR,CR: it is now possible to publish notification PR -> N: publish(message) activate PR activate N N -> N: store N --> PR: ok deactivate PR ... loop subscriptions N -> CR: subscribe_CB(message) activate CR CR --> N: ok deactivate CR end deactivate N]

Fig. 6.1 Subscription & Notification Process

6.2.1.1. Services

	
subscribe(topic, URL)

	Subscribe a URL to receive notifications sent to one topic

	Parameters

	
	topic (str) – Topic

	URL (str) – URL to be called when a notification is available

	Returns

	a subscription ID

This service is synchronous.

	
unsubscribe(id)

	Unsubscribe a URL from the list of receiver for one topic

	Parameters

	id (str) – Subscription ID

	Returns

	bool

This service is synchronous.

	
confirm(token)

	Confirm that the URL used during the subscription is valid

	Parameters

	token (str) – A token send through the URL.

	Returns

	bool

This service is synchronous.

	
publish(topic, subject, message)

	Notify of a new event all systems that subscribed to this topic

	Parameters

	
	topic (str) – Topic

	subject (str) – The subject of the message

	message (str) – The message itself (a string buffer)

	Returns

	N/A

This service is asynchronous (systems that subscribed on this topic are notified asynchronously).

6.2.1.2. Dictionaries

As an example, below there is a list of events that each component might handle.

Table 6.1 Event Type

	Event Type

	Emitted by CR

	Emitted by PR

	Live birth

	✔

	

	Death

	✔

	

	Fœtal Death

	✔

	

	Marriage

	✔

	

	Divorce

	✔

	

	Annulment

	✔

	

	Separation, judicial

	✔

	

	Adoption

	✔

	

	Legitimation

	✔

	

	Recognition

	✔

	

	Change of name

	✔

	

	Change of gender

	✔

	

	New person

	
	✔

	Duplicate person

	✔

	✔

6.2.2. Data Access

See Data Access for the technical details of this interface.

6.2.2.1. Services

	
getPersonAttributes(UIN, names)

	Retrieve person attributes.

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	names (list[str]) – The names of the attributes requested

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can request person's attributes from PR CR -> PR: getPersonAttributes(UIN,[names]) PR -->> CR: attributes note over CR,PR: PR can request person's attributes from CR PR -> CR: getPersonAttributes(UIN,[names]) CR -->> PR: attributes]

Fig. 6.2 getPersonAttributes Sequence Diagram

	
matchPersonAttributes(UIN, attributes)

	Match person attributes. This service is used to check the value of attributes without exposing private data

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	attributes (list[(str,str)]) – The attributes to match. Each attribute is described with its name and the expected value

	Returns

	If all attributes match, a Yes is returned. If one attribute does not match, a No is returned along with a list of (name,reason) for each non-matching attribute.

This service is synchronous. It can be used to match attributes in CR or in PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can match person's attributes in PR CR -> PR: matchPersonAttributes(UIN,[attributes]) PR -->> CR: Y/N+reasons note over CR,PR: PR can match person's attributes in CR PR -> CR: matchPersonAttributes(UIN,[attributes]) CR -->> PR: Y/N+reasons]

Fig. 6.3 matchPersonAttributes Sequence Diagram

	
verifyPersonAttributes(UIN, expressions)

	Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s attributes
without exposing private data

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	expressions (list[(str,str,str)]) – The expressions to evaluate. Each expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=) and the attribute value

	Returns

	A Yes if all expressions are true, a No if one expression is false, a Unknown if To be defined

This service is synchronous. It can be used to verify attributes in CR or in PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can verify person's attributes in PR CR -> PR: verifyPersonAttributes(UIN,[expressions]) PR -->> CR: Y/N/U note over CR,PR: PR can verify person's attributes in CR PR -> CR: verifyPersonAttributes(UIN,[expressions]) CR -->> PR: Y/N/U]

Fig. 6.4 verifyPersonAttributes Sequence Diagram

	
getPersonUIN(attributes)

	Retrieve UIN based on a set of attributes. This service is used when the UIN is unknown.

Authorization: To be defined

	Parameters

	attributes (list[(str,str)]) – The attributes to be used to find UIN. Each attribute is described with its name and its value

	Returns

	a list of matching UIN

This service is synchronous. It can be used to get the UIN of a person.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can get UIN from PR CR -> PR: getPersonUIN([attributes]) PR -->> CR: [UIN] note over CR,PR: PR can get UIN from CR PR -> CR: getPersonUIN([attributes]) CR -->> PR: [UIN]]

Fig. 6.5 getPersonUIN Sequence Diagram

	
getDocument(UINs, documentType, format)

	Retrieve in a selected format (PDF, image, …) a document such as a marriage certificate.

Authorization: To be defined

	Parameters

	
	UIN (list[str]) – The list of UINs for the persons concerned by the document

	documentType (str) – The type of document (birth certificate, etc.)

	format (str) – The format of the returned/requested document

	Returns

	The list of the requested documents

This service is synchronous. It can be used to get the documents for a person.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can get a document from PR CR -> PR: getDocument([UIN],documentType,format) PR -->> CR: [documents] note over CR,PR: PR can get a document from CR PR -> CR: getDocument([UIN],documentType,format) CR -->> PR: [documents]]

Fig. 6.6 getDocument Sequence Diagram

6.2.2.2. Dictionaries

As an example, below there is a list of attributes/documents that each component might handle.

Table 6.2 Person Attributes

	Attribute Name

	In CR

	In PR

	Description

	UIN

	✔

	✔

	

	first name

	✔

	✔

	

	last name

	✔

	✔

	

	spouse name

	✔

	✔

	

	date of birth

	✔

	✔

	

	place of birth

	✔

	✔

	

	gender

	✔

	✔

	

	date of death

	✔

	✔

	

	place of death

	✔

	
	

	reason of death

	✔

	
	

	status

	
	✔

	Example: missing, wanted, dead, etc.

Table 6.3 Certificate Attributes

	Attribute Name

	In CR

	In PR

	Description

	officer name

	✔

	
	

	number

	✔

	
	

	date

	✔

	
	

	place

	✔

	
	

	type

	✔

	
	

Table 6.4 Union Attributes

	Attribute Name

	In CR

	In PR

	Description

	date of union

	✔

	
	

	place of union

	✔

	
	

	conjoint1 UIN

	✔

	
	

	conjoint2 UIN

	✔

	
	

	date of divorce

	✔

	
	

Table 6.5 Filiation Attributes

	Attribute Name

	In CR

	In PR

	Description

	parent1 UIN

	✔

	
	

	parent2 UIN

	✔

	
	

Table 6.6 Document Type

	Document Type

	Description

	birth certificate

	To be completed

	death certificate

	To be completed

	marriage certificate

	To be completed

6.3. Civil Registry

The civil registry component MAY implement the following interfaces:

6.3.1. Notification

See Notification for the technical details of this interface.

The subscription & notification process is managed by a middleware and is described
in the following diagram:

[image: !include "skin.iwsd" hide footbox participant "Emitter" as PR participant "Notification\nEngine" as N participant "Subscriber" as CR note over PR,N: First step is to create the topic PR -> N: create_topic(name) activate PR activate N N --> PR: uuid deactivate N deactivate PR note over N,CR: Then a system can subscribe for events published on that topic CR -> N: subscribe(topic,URL) activate CR activate N N --> CR: id deactivate CR deactivate N ... later ... note over N,CR: confirm the address before the subscription is active N -> CR: notify(token) activate N activate CR CR -> N: subscribe_CB(token) activate N #FFBBB N --> CR: ok deactivate N CR --> N: ok deactivate CR deactivate N note over PR,CR: it is now possible to publish notification PR -> N: publish(message) activate PR activate N N -> N: store N --> PR: ok deactivate PR ... loop subscriptions N -> CR: subscribe_CB(message) activate CR CR --> N: ok deactivate CR end deactivate N]

Fig. 6.7 Subscription & Notification Process

6.3.1.1. Services

	
subscribe(topic, URL)

	Subscribe a URL to receive notifications sent to one topic

	Parameters

	
	topic (str) – Topic

	URL (str) – URL to be called when a notification is available

	Returns

	a subscription ID

This service is synchronous.

	
unsubscribe(id)

	Unsubscribe a URL from the list of receiver for one topic

	Parameters

	id (str) – Subscription ID

	Returns

	bool

This service is synchronous.

	
confirm(token)

	Confirm that the URL used during the subscription is valid

	Parameters

	token (str) – A token send through the URL.

	Returns

	bool

This service is synchronous.

	
publish(topic, subject, message)

	Notify of a new event all systems that subscribed to this topic

	Parameters

	
	topic (str) – Topic

	subject (str) – The subject of the message

	message (str) – The message itself (a string buffer)

	Returns

	N/A

This service is asynchronous (systems that subscribed on this topic are notified asynchronously).

6.3.1.2. Dictionaries

As an example, below there is a list of events that each component might handle.

Table 6.7 Event Type

	Event Type

	Emitted by CR

	Emitted by PR

	Live birth

	✔

	

	Death

	✔

	

	Fœtal Death

	✔

	

	Marriage

	✔

	

	Divorce

	✔

	

	Annulment

	✔

	

	Separation, judicial

	✔

	

	Adoption

	✔

	

	Legitimation

	✔

	

	Recognition

	✔

	

	Change of name

	✔

	

	Change of gender

	✔

	

	New person

	
	✔

	Duplicate person

	✔

	✔

6.3.2. Data Access

See Data Access for the technical details of this interface.

6.3.2.1. Services

	
getPersonAttributes(UIN, names)

	Retrieve person attributes.

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	names (list[str]) – The names of the attributes requested

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can request person's attributes from PR CR -> PR: getPersonAttributes(UIN,[names]) PR -->> CR: attributes note over CR,PR: PR can request person's attributes from CR PR -> CR: getPersonAttributes(UIN,[names]) CR -->> PR: attributes]

Fig. 6.8 getPersonAttributes Sequence Diagram

	
matchPersonAttributes(UIN, attributes)

	Match person attributes. This service is used to check the value of attributes without exposing private data

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	attributes (list[(str,str)]) – The attributes to match. Each attribute is described with its name and the expected value

	Returns

	If all attributes match, a Yes is returned. If one attribute does not match, a No is returned along with a list of (name,reason) for each non-matching attribute.

This service is synchronous. It can be used to match attributes in CR or in PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can match person's attributes in PR CR -> PR: matchPersonAttributes(UIN,[attributes]) PR -->> CR: Y/N+reasons note over CR,PR: PR can match person's attributes in CR PR -> CR: matchPersonAttributes(UIN,[attributes]) CR -->> PR: Y/N+reasons]

Fig. 6.9 matchPersonAttributes Sequence Diagram

	
verifyPersonAttributes(UIN, expressions)

	Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s attributes
without exposing private data

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	expressions (list[(str,str,str)]) – The expressions to evaluate. Each expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=) and the attribute value

	Returns

	A Yes if all expressions are true, a No if one expression is false, a Unknown if To be defined

This service is synchronous. It can be used to verify attributes in CR or in PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can verify person's attributes in PR CR -> PR: verifyPersonAttributes(UIN,[expressions]) PR -->> CR: Y/N/U note over CR,PR: PR can verify person's attributes in CR PR -> CR: verifyPersonAttributes(UIN,[expressions]) CR -->> PR: Y/N/U]

Fig. 6.10 verifyPersonAttributes Sequence Diagram

	
getPersonUIN(attributes)

	Retrieve UIN based on a set of attributes. This service is used when the UIN is unknown.

Authorization: To be defined

	Parameters

	attributes (list[(str,str)]) – The attributes to be used to find UIN. Each attribute is described with its name and its value

	Returns

	a list of matching UIN

This service is synchronous. It can be used to get the UIN of a person.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can get UIN from PR CR -> PR: getPersonUIN([attributes]) PR -->> CR: [UIN] note over CR,PR: PR can get UIN from CR PR -> CR: getPersonUIN([attributes]) CR -->> PR: [UIN]]

Fig. 6.11 getPersonUIN Sequence Diagram

	
getDocument(UINs, documentType, format)

	Retrieve in a selected format (PDF, image, …) a document such as a marriage certificate.

Authorization: To be defined

	Parameters

	
	UIN (list[str]) – The list of UINs for the persons concerned by the document

	documentType (str) – The type of document (birth certificate, etc.)

	format (str) – The format of the returned/requested document

	Returns

	The list of the requested documents

This service is synchronous. It can be used to get the documents for a person.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can get a document from PR CR -> PR: getDocument([UIN],documentType,format) PR -->> CR: [documents] note over CR,PR: PR can get a document from CR PR -> CR: getDocument([UIN],documentType,format) CR -->> PR: [documents]]

Fig. 6.12 getDocument Sequence Diagram

6.3.2.2. Dictionaries

As an example, below there is a list of attributes/documents that each component might handle.

Table 6.8 Person Attributes

	Attribute Name

	In CR

	In PR

	Description

	UIN

	✔

	✔

	

	first name

	✔

	✔

	

	last name

	✔

	✔

	

	spouse name

	✔

	✔

	

	date of birth

	✔

	✔

	

	place of birth

	✔

	✔

	

	gender

	✔

	✔

	

	date of death

	✔

	✔

	

	place of death

	✔

	
	

	reason of death

	✔

	
	

	status

	
	✔

	Example: missing, wanted, dead, etc.

Table 6.9 Certificate Attributes

	Attribute Name

	In CR

	In PR

	Description

	officer name

	✔

	
	

	number

	✔

	
	

	date

	✔

	
	

	place

	✔

	
	

	type

	✔

	
	

Table 6.10 Union Attributes

	Attribute Name

	In CR

	In PR

	Description

	date of union

	✔

	
	

	place of union

	✔

	
	

	conjoint1 UIN

	✔

	
	

	conjoint2 UIN

	✔

	
	

	date of divorce

	✔

	
	

Table 6.11 Filiation Attributes

	Attribute Name

	In CR

	In PR

	Description

	parent1 UIN

	✔

	
	

	parent2 UIN

	✔

	
	

Table 6.12 Document Type

	Document Type

	Description

	birth certificate

	To be completed

	death certificate

	To be completed

	marriage certificate

	To be completed

6.4. UIN Generator

The UIN generator component MAY implement the following interfaces:

6.4.1. UIN Management

See UIN Management for the technical details of this interface.

6.4.1.1. Services

	
createUIN(attributes)

	Generate a new UIN.

Authorization: To be defined

	Parameters

	attributes (list[(str,str)]) – A list of pair (attribute name, value) that can be used to allocate a new UIN

	Returns

	a new UIN or an error if the generation is not possible

This service is synchronous.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR participant "UIN Generator" as UIN note over CR,UIN: CR can request a new UIN CR -> UIN: createUIN([attributes]) UIN -->> CR: UIN note over PR,UIN: PR can request a new UIN PR -> UIN: createUIN([attributes]) UIN -->> PR: UIN]

Fig. 6.13 createUIN Sequence Diagram

6.5. ABIS

The ABIS component MAY implement the following interfaces:

6.5.1. Biometrics

This interface is described biometric services in the context of an identity system. It is based on
the following principles:

	It supports only multi-encounter model, meaning that an identity can have multiple set of biometric data,
one for each encounter.

	It does not expose templates (only images) for CRUD services, with one exception to support
the use case of documents with biometrics.

	Images can be passed by value or reference. When passed by value, they are base64-encoded.

	Existing standards are used whenever possible, for instance image preferred format is ISO-19794.

Note

Synchronous and Asynchronous Processing

Some services can be very slow depending on the algorithm used, the system workload, etc.
Services are described so that:

	If possible, the answer is provided synchronously in the response of the service.

	If not possible for some reason, a status PENDING is returned and the answer, when available, is
pushed to a callback provided by the client.

If no callback is provided, this indicates that the client wants a synchronous answer, whatever the time it takes.

If a callback is provided, the server will decide if the processing is done synchronously or asynchronously.

See Biometrics for the technical details of this interface.

6.5.1.1. Services

	
insert(subjectID, encounterID, galleryID, biographicData, contextualData, biometricData, clientData, callback, options)

	Insert a new encounter. No identify is performed. This service is synchronous.

Authorization: To be defined

	Parameters

	
	subjectID (str) – The subject ID

	encounterID (str) – The encounter ID. This is optional

	galleryID (list(str)) – the gallery ID to which this encounter belongs

	biographicData (dict) – The biographic data (ex: name, date of birth, gender, etc.)

	contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

	biometricData (list) – the biometric data (images)

	clientData (bytes) – additional data not interpreted by the server but stored as is and returned
when encounter data is requested.

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority, algorithm.

	Returns

	a status indicating success, error, or pending operation.
In case of success, the subject ID and the encounter ID are returned.
In case of pending operation, the result will be sent later.

	
read(subjectID, encounterID, callback, options)

	Retrieve the data of an encounter.

Authorization: To be defined

	Parameters

	
	subjectID (str) – The subject ID

	encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the subject are returned.

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority.

	Returns

	a status indicating success, error, or pending operation.
In case of success, the encounter data is returned.
In case of pending operation, the result will be sent later.

	
update(subjectID, encounterID, galleryID, biographicData, contextualData, biometricData, callback, options)

	Update an encounter.

Authorization: To be defined

	Parameters

	
	subjectID (str) – The subject ID

	encounterID (str) – The encounter ID

	galleryID (list(str)) – the gallery ID to which this encounter belongs

	biographicData (dict) – The biographic data (ex: name, date of birth, gender, etc.)

	contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

	biometricData (list) – the biometric data (images)

	clientData (bytes) – additional data not interpreted by the server but stored as is and returned
when encounter data is requested.

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority, algorithm.

	Returns

	a status indicating success, error, or pending operation.
In case of success, the subject ID and the encounter ID are returned.
In case of pending operation, the result will be sent later.

	
delete(subjectID, encounterID, callback, options)

	Delete an encounter.

Authorization: To be defined

	Parameters

	
	subjectID (str) – The subject ID

	encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the subject are deleted.

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority.

	Returns

	a status indicating success, error, or pending operation.
In case of pending operation, the operation status will be sent later.

	
getTemplate(subjectID, encounterID, biometricType, biometricSubType, callback, options)

	Retrieve the data of an encounter.

Authorization: To be defined

	Parameters

	
	subjectID (str) – The subject ID

	encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the subject are returned.

	biometricType (str) – The type of biometrics to consider

	biometricSubType (str) – The subtype of biometrics to consider

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority.

	Returns

	a status indicating success, error, or pending operation.
In case of success, a list of template data is returned.
In case of pending operation, the result will be sent later.

	
identify(galleryID, filter, biometricData, callback, options)

	Identify a subject using biometrics data and filters on biographic or contextual data. This may include multiple
operations, including manual operations.

Authorization: To be defined

	Parameters

	
	galleryID (str) – Search only in this gallery.

	filter (dict) – The input data (filters and biometric data)

	biometricData – the biometric data.

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority,
maxNbCand, threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A list of candidates is returned, either synchronously or using the callback.

	
identify(galleryID, filter, subjectID, callback, options)

	Identify a subject using biometrics data of a subject existing in the system and filters on biographic or
contextual data. This may include multiple operations, including manual operations.

Authorization: To be defined

	Parameters

	
	galleryID (str) – Search only in this gallery.

	filter (dict) – The input data (filters and biometric data)

	subjectID – the subject ID

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority,
maxNbCand, threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A list of candidates is returned, either synchronously or using the callback.

	
verify(galleryID, subjectID, biometricData, callback, options)

	Verify an identity using biometrics data.

Authorization: To be defined

	Parameters

	
	galleryID (str) – Search only in this gallery. If the subject does not belong to this gallery,
an error is returned.

	subjectID (str) – The subject ID

	biometricData – The biometric data

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority,
threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A status (boolean) is returned, either synchronously or using the callback. Optionally, details
about the matching result can be provided like the score per biometric and per encounter.

	
verify(biometricData1, biometricData2, callback, options)

	Verify that two sets of biometrics data correspond to the same subject.

Authorization: To be defined

	Parameters

	
	biometricData1 – The first set of biometric data

	biometricData2 – The second set of biometric data

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority,
threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A status (boolean) is returned, either synchronously or using the callback. Optionally, details
about the matching result can be provided like the score per the biometric.

	
getGalleries(callback, options)

	Get the ID os all the galleries.

Authorization: To be defined

	Parameters

	
	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority.

	Returns

	a status indicating success, error, or pending operation.
A list of gallery ID is returned, either synchronously or using the callback.

	
getGalleryContent(galleryID, callback, options)

	Get the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: To be defined

	Parameters

	
	galleryID (str) – Gallery whose content will be returned.

	callback – The address of a service to be called when the result is available.

	options (dict) – the processing options. Supported options are transactionID, priority.

	Returns

	a status indicating success, error, or pending operation.
A list of subjects/encounters is returned, either synchronously or using the callback.

6.5.1.2. Options

Table 6.13 Biometric Services Options

	Name

	Description

	transactionID

	A string provided by the client application to identity the request being submitted.
It is optional in most cases. When provided, it can be used for tracing and debugging.
It is mandatory for asynchronous services and is included in the response pushed asynchronously.

	priority

	Priority of the request. Values range from 0 to 9

	maxNbCand

	The maximum number of candidates to return.

	threshold

	The threshold to apply on the score to filter the candidates during an identification,
authentication or verification.

	algorithm

	Specify the type of algorithm to be used.

	accuracyLevel

	Specify the accuracy expected of the request. This is to support different use cases, when
different behavior of the ABIS is expected (response time, accuracy, consolidation/fusion, etc.).

6.5.1.3. Data Model

Table 6.14 Biometric Data Model

	Type

	Description

	Example

	Gallery

	A group of subjects related by a common purpose, designation, or status.
A subject can belong to multiple galleries.

	TBD

	Subject

	Person who is known to an identity assurance system.

	TBD

	Encounter

	Event in which the client application interacts with a subject resulting in data being
collected during or about the encounter. An encounter is characterized by an identifier and a type
(also called purpose in some context).

	TBD

	Biographic Data

	a dictionary (list of names and values) giving the biographic data of interest for the biometric services.

	TBD

	Filters

	a dictionary (list of names and values or range of values) describing the filters during a search.
Filters can apply on biographic data, contextual data or encounter type.

	TBD

	Biometric Data

	Digital representation of biometric characteristics.
As an example, a record containing the image of a finger is a biometric data.
All images can be passed by value (image buffer is in the request) or by reference (the address of the
image is in the request).
All images are compliant with ISO 19794. ISO 19794 allows multiple encoding and supports additional
metadata specific to fingerprint, palmprint, portrait or iris.

	TBD

	Candidate

	Information about a candidate found during an identification

	TBD

	CandidateScore

	Detailed information about a candidate found during an identification. It includes
the score for the biometrics used.

	TBD

	Template

	A computed buffer corresponding to a biometric and allowing the comparison of biometrics.
A template has a format that can be a standard format or a vendor-specific format.

	N/A

[image: !include "skin.iwsd" class Gallery { string galleryID; } class Subject { string subjectID; } Subject "*" - "*" Gallery class Encounter { string encounterID; string encounterType; byte[] clientData; } Subject o-- "*" Encounter class BiographicData { string field1; int field2; date field3; ... } Encounter o- BiographicData class ContextualData { string field1; int field2; date field3; ... } ContextualData -o Encounter class Filters { string filter1; int filter2Min; int filter2Max; date filter3Min; date filter3Max; ... } class BiometricData { } Encounter o-- "*" BiometricData class Template { byte[] buffer; string format; } class Finger { byte[] fingerImage; URL fingerImageRef; } BiometricData <|-- Finger class Palm { byte[] palmImage; URL palmImageRef; } BiometricData <|-- Palm class Portrait { byte[] portraitImage; URL portraitImageRef; } BiometricData <|-- Portrait class Iris { byte[] irisImage; URL irisImageRef; } BiometricData <|-- Iris Finger -- Template Palm -- Template Portrait -- Template Iris -- Template class Candidate { int rank; int score; } Candidate . Subject class CandidateScore { int score; string encounterID; enum biometricType; enum biometricSubType; } Candidate -- "*" CandidateScore]

Fig. 6.14 Biometric Data Model

6.6. Document Management System

The document management system component MAY implement the following interfaces:

To be defined

6.7. Third Party

The third party component MAY implement the following interfaces:

6.7.1. Third Party Services

6.7.1.1. Services

	
verifyIdentity(UIN[, IDAttribute])

	Verify Identity based on UIN and set of Identity Attributes.
Attributes can be Biometric data, Civil data or a credential.

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	IDAttribute (list[str]) – A list of list of pair (name,value) requested

	Returns

	Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

	
identify([inIDAttribute][, outIDAttribute])

	Identify a person based on a set of inIDAttribute Identity Attributes.
Attributes can be Biometric data, Civil data or a credential.
Returns list of identities with attributes specified in outIDAttribute

Authorization: To be defined

	Parameters

	
	inIDAttribute (list[str]) – A list of list of pair (name,value) requested

	outIDAttribute (list[str]) – A list of list of attribute names requested

	Returns

	Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

	
getAttributes(UIN, names)

	Retrieve person attributes.

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	names (list[str]) – The names of the attributes requested

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.)
the value is replaced with an error

	
getAttributeSet(UIN, setName)

	Retrieve person attributes corresponding to a predefined set name.

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	setName (str) – The name of predefined attributes set name

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.)
the value is replaced with an error

7. Annexes

	7.1. Glossary

	7.2. Data Format

	7.3. Technical Specifications
	7.3.1. Notification
	7.3.1.1. Services
	7.3.1.1.1. Publisher

	7.3.1.1.2. Subscriber

	7.3.1.2. Notification Message

	7.3.2. UIN Management
	7.3.2.1. Services

	7.3.3. Data Access
	7.3.3.1. Services

	7.3.3.2. Data Model
	7.3.3.2.1. Person Attributes

	7.3.3.2.2. Matching Error

	7.3.3.2.3. Expression

	7.3.3.2.4. Error

	7.3.4. Biometrics
	7.3.4.1. Services
	7.3.4.1.1. CRUD

	7.3.4.1.2. Gallery

	7.3.4.1.3. Search

	7.3.4.2. Data Model

	7.3.5. Third Party Services
	7.3.5.1. Services

7.1. Glossary

	ABIS

	Automated Biometric Identification System

	CR

	Civil Registry. The system in charge of the continuous, permanent, compulsory and universal recording
of the occurrence and characteristics of vital events pertaining to the population, as provided
through decree or regulation in accordance with the legal requirements in each country.

	DMS

	Document Management System

	Functional systems and registries

	Managing data including voter rolls, land registry, vehicle registration, passport, residence registry,
education, health and benefits.

	HTTP Status Codes

	The HTTP Status Codes are used to indicate the status of the executed operation. The available status codes are
described by RFC 7231 [http://tools.ietf.org/html/rfc7231#section-6] and in the
IANA Status Code Registry [http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml].

	Mime Types

	Mime type definitions are spread across several resources. The mime type definitions should be in compliance with
RFC 6838 [http://tools.ietf.org/html/rfc6838].

Some examples of possible mime type definitions:

text/plain; charset=utf-8
application/json
application/vnd.github+json
application/vnd.github.v3+json
application/vnd.github.v3.raw+json
application/vnd.github.v3.text+json
application/vnd.github.v3.html+json
application/vnd.github.v3.full+json
application/vnd.github.v3.diff
application/vnd.github.v3.patch

	OSIA

	Open Standard Identity APIs

	PR

	Population Registry. The system in charge of the recording of selected information pertaining to each member
of the resident population of a country.

	UIN

	Unique Identity Number.

7.2. Data Format

Conventions about data format in the interface: json, standards for date, images; structure of biographic data

7.3. Technical Specifications

	7.3.1. Notification
	7.3.1.1. Services
	7.3.1.1.1. Publisher

	7.3.1.1.2. Subscriber

	7.3.1.2. Notification Message

	7.3.2. UIN Management
	7.3.2.1. Services

	7.3.3. Data Access
	7.3.3.1. Services

	7.3.3.2. Data Model
	7.3.3.2.1. Person Attributes

	7.3.3.2.2. Matching Error

	7.3.3.2.3. Expression

	7.3.3.2.4. Error

	7.3.4. Biometrics
	7.3.4.1. Services
	7.3.4.1.1. CRUD

	7.3.4.1.2. Gallery

	7.3.4.1.3. Search

	7.3.4.2. Data Model

	7.3.5. Third Party Services
	7.3.5.1. Services

7.3.1. Notification

Download the OpenAPI file for this interface notification.yaml [https://github.com/SecureIdentityAlliance/osia/tree/master/src/doc/yaml/notification.yaml].

7.3.1.1. Services

7.3.1.1.1. Publisher

	
POST /v1/topics

	Create a topic

Create a new topic. This service is idempotent.

	Query Parameters

	
	name (string) – The topic name
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Topic was created.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "uuid": "string",
 "name": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/topics

	Get all topics

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Get all topics

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/topics HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "uuid": "string",
 "name": "string"
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
DELETE /v1/topics/{uuid}

	Delete a topic

Delete a topic

	Parameters

	
	uuid (string) – the unique ID returned when the topic was created

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Topic successfully removed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Topic not found

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/topics/{uuid}/publish

	Post a notification to a topic.

	Parameters

	
	uuid (string) – the unique ID of the topic

	Query Parameters

	
	subject (string) – the subject of the message.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Notification published

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.1.1.2. Subscriber

	
POST /v1/subscriptions

	Subscribe to a topic

Subscribes a client to receive event notification.

Subscriptions are idempotent. Subscribing twice for the same topic and
endpoint (protocol, address) will return the same subscription ID and the
subscriber will receive only once the notifications.

	Query Parameters

	
	topic (string) – The name of the topic for which notifications will be sent
(Required)

	protocol (string) – The protocol used to send the notification

	address (string) – the endpoint address, where the notifications will be sent.
(Required)

	policy (string) – The delivery policy, expressing what happens when the message cannot be delivered.

If not specified, retry will be done every hour for 7 days.

The value is a set of integer separated by comma:

	countdown: the number of seconds to wait before retrying. Default: 3600.

	max: the maximum max number of retry. -1 indicates infinite retry. Default: 168

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Subscription successfully created. Waiting for confirmation message.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "uuid": "string",
 "topic": "string",
 "protocol": "http",
 "address": "string",
 "policy": "string",
 "active": true
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: onEvent

	
POST {$request.query.address}

	
	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Message received and processed.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

	Request Headers

	
	message-type – the type of the message
(Required)

	subscription-id – the unique ID of the subscription

	message-id – the unique ID of the message
(Required)

	topic-id – the unique ID of the topic
(Required)

Example request:

POST {$request.query.address} HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "type": "SubscriptionConfirmation",
 "token": "string",
 "topic": "string",
 "message": "string",
 "messageId": "string",
 "subject": "string",
 "subscribeURL": "https://example.com",
 "timestamp": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/subscriptions

	Get all subscriptions

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Get all subscriptions

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/subscriptions HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "uuid": "string",
 "topic": "string",
 "protocol": "http",
 "address": "string",
 "policy": "string",
 "active": true
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
DELETE /v1/subscriptions/{uuid}

	Unsubscribe from a topic

Unsubscribes a client from receiving notifications for a topic

	Parameters

	
	uuid (string) – the unique ID returned when the subscription was done

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Subscription successfully removed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Subscription not found

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/subscriptions/confirm

	Confirm the subscription

Confirm a subscription

	Query Parameters

	
	token (string) – the token sent to the endpoint
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Subscription successfully confirmed

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid token

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/subscriptions/confirm?token=string HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.1.2. Notification Message

This section describes the messages exchanged through notification. All messages
are encoded in json. They are generated by the emitter (the source of the event)
and received by zero, one, or many receivers that have subscribed to the type of event.

Table 7.1 Event Type & Message

	Event Type

	Message

	liveBirth

	
	source: identification of the system emitting the event

	uin of the new born

	uin1 of the first parent (optional if parent is unknown)

	uin2 of the second parent (optional if parent is unknown)

Example:

{
 "source": "systemX",
 "uin": "123456789",
 "uin1": "123456789",
 "uin2": "234567890"
}

	death

	
	source: identification of the system emitting the event

	uin of the dead person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	birthCancellation

	
	source: identification of the system emitting the event

	uin of the person whose birth declaration is being cancelled

Example:

{
 "source": "systemX",
 "uin": "123456789",
}

	foetalDeath

	
	source: identification of the system emitting the event

	uin of the new born

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	marriage

	
	source: identification of the system emitting the event

	uin1 of the first conjoint

	uin2 of the second conjoint

Example:

{
 "source": "systemX",
 "uin1": "123456789",
 "uin2": "234567890"
}

	divorce

	
	source: identification of the system emitting the event

	uin1 of the first conjoint

	uin2 of the second conjoint

Example:

{
 "source": "systemX",
 "uin1": "123456789",
 "uin2": "234567890"
}

	annulment

	
	source: identification of the system emitting the event

	uin1 of the first conjoint

	uin2 of the second conjoint

Example:

{
 "source": "systemX",
 "uin1": "123456789",
 "uin2": "234567890"
}

	separation

	
	source: identification of the system emitting the event

	uin1 of the first conjoint

	uin2 of the second conjoint

Example:

{
 "source": "systemX",
 "uin1": "123456789",
 "uin2": "234567890"
}

	adoption

	
	source: identification of the system emitting the event

	uin of the child

	uin1 of the first parent

	uin2 of the second parent (optional)

Example:

{
 "source": "systemX",
 "uin": "123456789",
 "uin1": "234567890"
}

	legitimation

	
	source: identification of the system emitting the event

	uin of the child

	uin1 of the first parent

	uin2 of the second parent (optional)

Example:

{
 "source": "systemX",
 "uin": "987654321",
 "uin1": "123456789",
 "uin2": "234567890"
}

	recognition

	
	source: identification of the system emitting the event

	uin of the child

	uin1 of the first parent

	uin2 of the second parent (optional)

Example:

{
 "source": "systemX",
 "uin": "123456789",
 "uin2": "234567890"
}

	changeOfName

	
	source: identification of the system emitting the event

	uin of the person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	changeOfGender

	
	source: identification of the system emitting the event

	uin of the person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	updatePerson

	
	source: identification of the system emitting the event

	uin of the person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	newPerson

	
	source: identification of the system emitting the event

	uin of the person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	duplicatePerson

	
	source: identification of the system emitting the event

	uin of the person to be kept

	duplicates: list of uin for records identified as duplicates

Example:

{
 "source": "systemX",
 "uin": "123456789",
 "duplicates": [
 "234567890",
 "345678901"
]
}

Note

Anonymized notification of events will be treated separately.

7.3.2. UIN Management

Download the OpenAPI file for this interface uin.yaml [https://github.com/SecureIdentityAlliance/osia/tree/master/src/doc/yaml/uin.yaml].

7.3.2.1. Services

	
POST /v1/uin

	Request the generation of a new UIN.

The request body should contain a list of attributes and their value, formatted as a json dictionary.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – UIN is generated

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

POST http://server.com/v1/uin HTTP/1.1
Host: server.com
Content-Type: application/json

{
 "firstName": "John",
 "lastName": "Doo",
 "dateOfBirth": "1984-11-19"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

1235567890

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.3. Data Access

Download the OpenAPI file for this interface dataaccess.yaml [https://github.com/SecureIdentityAlliance/osia/tree/master/src/doc/yaml/dataaccess.yaml].

7.3.3.1. Services

	
GET /v1/persons

	Retrieve a UIN based on a set of attributes.
This service is used when the UIN is unknown.

	Query Parameters

	
	attributes (object) – The attributes used to retrieve the UIN
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – All UIN found (a list of at least one UIN)

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid parameter

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – No UIN found

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

GET /v1/persons?firstName=John&lastName=Do HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 "1235567890"
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/persons/{uin}

	Retrieve attributes for a person.

	Parameters

	
	uin (string) – Unique Identity Number

	Query Parameters

	
	attributeNames (array) – The names of the attributes requested for this person
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Requested attributes values or Error description.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

GET /v1/persons/{uin}?attributeNames=firstName&attributeNames=lastName&attributeNames=dob HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "firstName": "John",
 "lastName": "Doo",
 "dob": {
 "code": 1023,
 "message": "Unknown attribute name"
 }
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/persons/{uin}/match

	Match person attributes.
This service is used to check the value of attributes without exposing private data.

The request body should contain a list of attributes and their value, formatted as a json dictionary.

	Parameters

	
	uin (string) – Unique Identity Number

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Information about non matching attributes. Returns a list of matching result (See Matching Error)
An empty list indicates all attributes were matching.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

POST /v1/persons/{uin}/match HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "firstName": "John",
 "lastName": "Doo",
 "dateOfBirth": "1984-11-19"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "attributeName": "firstName",
 "errorCode": 1
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/persons/{uin}/verify

	Evaluate expressions (See Expression) on person attributes.
This service is used to evaluate simple expressions on
person’s attributes without exposing private data

The request body should contain a list of Expression.

	Parameters

	
	uin (string) – Unique Identity Number

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The expressions are all true (true is returned) or one is false (false is returned)

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access. The service is forbidden or one of the attributes is forbidden.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

POST /v1/persons/{uin}/verify HTTP/1.1
Host: example.com
Content-Type: application/json

[
 {
 "attributeName": "firstName",
 "operator": "=",
 "value": "John"
 },
 {
 "attributeName": "dateOfBirth",
 "operator": "<",
 "value": "1990-12-31"
 }
]

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

true

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/persons/{uin}/document

	Retrieve in an unstructured format (PDF, image) a document such as a marriage certificate.

	Parameters

	
	uin (string) – Unique Identity Number

	Query Parameters

	
	secondaryUin (string) – Unique Identity Number of a second person linked to the requested document.
Example: wife, husband

	doctype (string) – The type of document
(Required)

	format (string) – The expected format of the document.
If the document is not available at this format, it must be converted.
TBD: one format for certificate data.
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The document(s) is/are found and returned, as binary data in a MIME multipart structure.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	415 Unsupported Media Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16] – Unsupported format

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

GET /v1/persons/{uin}/document?doctype=marriage&secondaryUin=234567890&format=pdf HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.3.2. Data Model

7.3.3.2.1. Person Attributes

When exchanged in the services described in this document, the persons attributes
will apply the following rules:

Table 7.2 Person Attributes

	Attribute Name

	Description

	Format

	uin

	Unique Identity Number

	Text

	firstName

	First name

	Text

	lastName

	Last name

	Text

	spouseName

	Spouse name

	Text

	dateOfBirth

	Date of birth

	Date (iso8601). Example: 1987-11-17

	placeOfBirth

	Place of birth

	Text

	gender

	Gender

	Number (iso5218). One of 0 (Not known), 1 (Male), 2 (Female), 9 (Not applicable)

	dateOfDeath

	Date of death

	Date (iso8601). Example: 2018-11-17

	placeOfDeath

	Place of death

	Text

	reasonOfDeath

	Reason of death

	Text

	status

	Status. Example: missing, wanted, dead, etc.

	Text

7.3.3.2.2. Matching Error

A list of:

Table 7.3 Matching Error Object

	Attribute

	Type

	Description

	Mandatory

	attributeName

	String

	Attribute name (See Person Attributes)

	Yes

	errorCode

	32 bits integer

	Error code. Possible values: 0 (attribute does not exist); 1 (attribute exists but does not match)

	Yes

7.3.3.2.3. Expression

Table 7.4 Expression Object

	Attribute

	Type

	Description

	Mandatory

	attributeName

	String

	Attribute name (See Person Attributes)

	Yes

	operator

	String

	Operator to apply. Possible values: <, >, =, >=, <=

	Yes

	value

	string, or integer, or boolean

	The value to be evaluated

	Yes

7.3.3.2.4. Error

Table 7.5 Error Object

	Attribute

	Type

	Description

	Mandatory

	code

	32 bits integer

	Error code

	Yes

	message

	String

	Error message

	Yes

7.3.4. Biometrics

Download the OpenAPI file for this interface abis.yaml [https://github.com/SecureIdentityAlliance/osia/tree/master/src/doc/yaml/abis.yaml].

7.3.4.1. Services

7.3.4.1.1. CRUD

	
GET /v1/subjects/{subjectId}/{encounterId}/templates

	Get biometrics templates

	Parameters

	
	subjectId (string) – the id of the subject

	encounterId (string) – the id of the encounter

	Query Parameters

	
	biometricType (string) – the type of biometrics to return

	biometricSubType (string) – the sub-type of biometrics to return

	templateFormat (string) – the format of the template to return

	qualityFormat (string) – the format of the quality to return

	transactionId (string) – The id of the transaction

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Operation successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned (if no transaction ID was provided, one is generated by the server)

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record or unkown biometrics

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/subjects/{subjectId}/{encounterId}/templates HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "template": "c3RyaW5n",
 "templateFormat": "ISO_19794_2",
 "quality": 1,
 "qualityFormat": "ISO_19794",
 "vendor": "string",
 "algorithm": "string"
 }
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: getTemplateResponse

	
POST ${request.query.callback}

	Response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "template": "c3RyaW5n",
 "templateFormat": "ISO_19794_2",
 "quality": 1,
 "qualityFormat": "ISO_19794",
 "vendor": "string",
 "algorithm": "string"
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/subjects/{subjectId}/{encounterId}

	Insert one encounter

	Parameters

	
	subjectId (string) – the id of the subject

	encounterId (string) – the id of the encounter

	Query Parameters

	
	transactionId (string) – The id of the transaction

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	algorithm (string) – Hint about the algorithm to be used

	Status Codes

	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – Insertion successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned (if no transaction ID was provided, one is generated by the server)

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Insertion not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/subjects/{subjectId}/{encounterId} HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "galleries": [
 "string"
],
 "encounter": [
 {
 "encounterType": "string",
 "clientData": "c3RyaW5n",
 "contextualData": {
 "date": "2019-05-21"
 },
 "biographicData": {
 "dateOfBirth": "2019-05-21",
 "gender": "M",
 "nationality": "string"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2019-05-21",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
 }
]
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: insertResponse

	
POST ${request.query.callback}

	Response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "status": "OK",
 "subjectId": "string",
 "encounterId": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/subjects/{subjectId}/{encounterId}

	Read one encounter

	Parameters

	
	subjectId (string) – the id of the subject

	encounterId (string) – the id of the encounter

	Query Parameters

	
	transactionId (string) – The id of the transaction

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Read successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned (if no transaction ID was provided, one is generated by the server)

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/subjects/{subjectId}/{encounterId} HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "galleries": [
 "string"
],
 "encounter": {
 "encounterType": "string",
 "clientData": "c3RyaW5n",
 "contextualData": {
 "date": "2019-05-21"
 },
 "biographicData": {
 "dateOfBirth": "2019-05-21",
 "gender": "M",
 "nationality": "string"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2019-05-21",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
 }
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: readResponse

	
POST ${request.query.callback}

	Response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "galleries": [
 "string"
],
 "encounter": {
 "encounterType": "string",
 "clientData": "c3RyaW5n",
 "contextualData": {
 "date": "2019-05-21"
 },
 "biographicData": {
 "dateOfBirth": "2019-05-21",
 "gender": "M",
 "nationality": "string"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2019-05-21",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
 }
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
PUT /v1/subjects/{subjectId}/{encounterId}

	Update one encounter

	Parameters

	
	subjectId (string) – the id of the subject

	encounterId (string) – the id of the encounter

	Query Parameters

	
	transactionId (string) – The id of the transaction

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	algorithm (string) – Hint about the algorithm to be used

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned (if no transaction ID was provided, one is generated by the server)

	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Update successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Update not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

PUT /v1/subjects/{subjectId}/{encounterId} HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "galleries": [
 "string"
],
 "encounter": [
 {
 "encounterType": "string",
 "clientData": "c3RyaW5n",
 "contextualData": {
 "date": "2019-05-21"
 },
 "biographicData": {
 "dateOfBirth": "2019-05-21",
 "gender": "M",
 "nationality": "string"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2019-05-21",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
 }
]
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: updateResponse

	
POST ${request.query.callback}

	Response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
DELETE /v1/subjects/{subjectId}/{encounterId}

	Delete one encounter

	Parameters

	
	subjectId (string) – the id of the subject

	encounterId (string) – the id of the encounter

	Query Parameters

	
	transactionId (string) – The id of the transaction

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned (if no transaction ID was provided, one is generated by the server)

	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Delete successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Delete not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: deleteResponse

	
POST ${request.query.callback}

	Response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/subjects

	Insert one encounter and generate ID for both the subject and the encounter

	Query Parameters

	
	transactionId (string) – The id of the transaction

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	algorithm (string) – Hint about the algorithm to be used

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Insertion successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned (if no transaction ID was provided, one is generated by the server)

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Insertion not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/subjects HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "galleries": [
 "string"
],
 "encounter": [
 {
 "encounterType": "string",
 "clientData": "c3RyaW5n",
 "contextualData": {
 "date": "2019-05-21"
 },
 "biographicData": {
 "dateOfBirth": "2019-05-21",
 "gender": "M",
 "nationality": "string"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2019-05-21",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
 }
]
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "status": "OK",
 "subjectId": "string",
 "encounterId": "string"
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: insertResponse

	
POST ${request.query.callback}

	Response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "status": "OK",
 "subjectId": "string",
 "encounterId": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/subjects/{subjectId}

	Insert one encounter and generate its ID

	Parameters

	
	subjectId (string) – the id of the subject

	Query Parameters

	
	transactionId (string) – The id of the transaction

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	algorithm (string) – Hint about the algorithm to be used

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Insertion successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned (if no transaction ID was provided, one is generated by the server)

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Insertion not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/subjects/{subjectId} HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "galleries": [
 "string"
],
 "encounter": [
 {
 "encounterType": "string",
 "clientData": "c3RyaW5n",
 "contextualData": {
 "date": "2019-05-21"
 },
 "biographicData": {
 "dateOfBirth": "2019-05-21",
 "gender": "M",
 "nationality": "string"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2019-05-21",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
 }
]
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "status": "OK",
 "subjectId": "string",
 "encounterId": "string"
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: insertResponse

	
POST ${request.query.callback}

	Response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "status": "OK",
 "subjectId": "string",
 "encounterId": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
DELETE /v1/subjects/{subjectId}

	Delete a subject and all its encounters

	Parameters

	
	subjectId (string) – the id of the subject

	Query Parameters

	
	transactionId (string) – The id of the transaction

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned (if no transaction ID was provided, one is generated by the server)

	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Delete successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Delete not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: deleteResponse

	
POST ${request.query.callback}

	Response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.4.1.2. Gallery

	
GET /v1/galleries

	Get the ID of all the galleries

	Query Parameters

	
	transactionId (string) – The id of the transaction

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Operation successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned (if no transaction ID was provided, one is generated by the server)

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/galleries HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 "string"
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: getGalleriesResponse

	
POST ${request.query.callback}

	Response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
 "string"
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/galleries/{galleryId}

	Get the content of one gallery

	Parameters

	
	galleryId (string) – the id of the gallery

	Query Parameters

	
	transactionId (string) – The id of the transaction

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Operation successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned (if no transaction ID was provided, one is generated by the server)

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/galleries/{galleryId} HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "subjectId": "string",
 "encounterId": "string"
 }
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: getGalleryContentResponse

	
POST ${request.query.callback}

	Response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
 {
 "subjectId": "string",
 "encounterId": "string"
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.4.1.3. Search

	
POST /v1/identify/{galleryId}

	Biometric identification

Identification based on biometric data from one gallery

	Parameters

	
	galleryId (string) – the id of the gallery

	Query Parameters

	
	transactionId (string) – The id of the transaction

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	maxNbCand (integer) – the maximum number of candidates

	threshold (number) – the algorithm threshold

	accuracyLevel (string) – the accuracy level expected for this request

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Request executed. Identification result is returned.

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned (if no transaction ID was provided, one is generated by the server)

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Identification not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/identify/{galleryId} HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "filter": {
 "dateOfBirthMin": "2019-05-21",
 "dateOfBirthMax": "2019-05-21"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2019-05-21",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "subjectId": "string",
 "rank": 1,
 "score": 1.0,
 "scoreList": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
 }
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: identifyResponse

	
POST ${request.query.callback}

	Identification response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
 {
 "subjectId": "string",
 "rank": 1,
 "score": 1.0,
 "scoreList": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/identify/{galleryId}/{subjectId}

	Biometric identification

Identification based on existing data from one gallery

	Parameters

	
	galleryId (string) – the id of the gallery

	subjectId (string) – the id of the subject

	Query Parameters

	
	transactionId (string) – The id of the transaction

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	maxNbCand (integer) – the maximum number of candidates

	threshold (number) – the algorithm threshold

	accuracyLevel (string) – the accuracy level expected for this request

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Request executed. Identification result is returned.

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned (if no transaction ID was provided, one is generated by the server)

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Identification not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/identify/{galleryId}/{subjectId} HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "dateOfBirthMin": "2019-05-21",
 "dateOfBirthMax": "2019-05-21"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "subjectId": "string",
 "rank": 1,
 "score": 1.0,
 "scoreList": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
 }
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: identifyResponse

	
POST ${request.query.callback}

	Identification response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
 {
 "subjectId": "string",
 "rank": 1,
 "score": 1.0,
 "scoreList": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/verify/{galleryId}/{subjectId}

	Biometric verification

Verification of one set of biometric data and a record in the system

	Parameters

	
	galleryId (string) – the id of the gallery

	subjectId (string) – the id of the subject

	Query Parameters

	
	transactionId (string) – The id of the transaction

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	threshold (number) – the algorithm threshold

	accuracyLevel (string) – the accuracy level expected for this request

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Verification execution successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned (if no transaction ID was provided, one is generated by the server)

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Verification not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/verify/{galleryId}/{subjectId} HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2019-05-21",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "decision": true,
 "scores": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: verifyResponse

	
POST ${request.query.callback}

	Verification response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "decision": true,
 "scores": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/verify

	Biometric verification

Verification of two sets of biometric data

	Query Parameters

	
	transactionId (string) – The id of the transaction

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	threshold (number) – the algorithm threshold

	accuracyLevel (string) – the accuracy level expected for this request

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Verification execution successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned (if no transaction ID was provided, one is generated by the server)

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Verification not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/verify HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "biometricData1": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2019-05-21",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
],
 "biometricData2": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2019-05-21",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "decision": true,
 "scores": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: verifyResponse

	
POST ${request.query.callback}

	Verification response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "decision": true,
 "scores": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.4.2. Data Model

To be completed

7.3.5. Third Party Services

7.3.5.1. Services

To be defined

 HTTP Routing Table

 /${request.query.callback} |
 /v1 |
 /{$request.query.address}

 		 	

 		
 /${request.query.callback}	

 	
 	
 POST ${request.query.callback}	
 Verification response callback

 		 	

 		
 /v1	

 	
 	
 GET /v1/galleries	
 Get the ID of all the galleries

 	
 	
 GET /v1/galleries/{galleryId}	
 Get the content of one gallery

 	
 	
 GET /v1/persons	
 null

 	
 	
 GET /v1/persons/{uin}	
 null

 	
 	
 GET /v1/persons/{uin}/document	
 null

 	
 	
 GET /v1/subjects/{subjectId}/{encounterId}	
 Read one encounter

 	
 	
 GET /v1/subjects/{subjectId}/{encounterId}/templates	
 Get biometrics templates

 	
 	
 GET /v1/subscriptions	
 Get all subscriptions

 	
 	
 GET /v1/subscriptions/confirm	
 Confirm the subscription

 	
 	
 GET /v1/topics	
 Get all topics

 	
 	
 POST /v1/identify/{galleryId}	
 Biometric identification

 	
 	
 POST /v1/identify/{galleryId}/{subjectId}	
 Biometric identification

 	
 	
 POST /v1/persons/{uin}/match	
 null

 	
 	
 POST /v1/persons/{uin}/verify	
 null

 	
 	
 POST /v1/subjects	
 Insert one encounter and generate ID for both the subject and the encounter

 	
 	
 POST /v1/subjects/{subjectId}	
 Insert one encounter and generate its ID

 	
 	
 POST /v1/subjects/{subjectId}/{encounterId}	
 Insert one encounter

 	
 	
 POST /v1/subscriptions	
 Subscribe to a topic

 	
 	
 POST /v1/topics	
 Create a topic

 	
 	
 POST /v1/topics/{uuid}/publish	
 Post a notification to a topic.

 	
 	
 POST /v1/uin	

 	
 	
 POST /v1/verify	
 Biometric verification

 	
 	
 POST /v1/verify/{galleryId}/{subjectId}	
 Biometric verification

 	
 	
 PUT /v1/subjects/{subjectId}/{encounterId}	
 Update one encounter

 	
 	
 DELETE /v1/subjects/{subjectId}	
 Delete a subject and all its encounters

 	
 	
 DELETE /v1/subjects/{subjectId}/{encounterId}	
 Delete one encounter

 	
 	
 DELETE /v1/subscriptions/{uuid}	
 Unsubscribe from a topic

 	
 	
 DELETE /v1/topics/{uuid}	
 Delete a topic

 		 	

 		
 /{$request.query.address}	

 	
 	
 POST {$request.query.address}	
 null

Index

 A
 | C
 | D
 | F
 | H
 | M
 | O
 | P
 | U

A

 	
 	ABIS

C

 	
 	CR

D

 	
 	DMS

F

 	
 	Functional systems and registries

H

 	
 	HTTP Status Codes

M

 	
 	Mime Types

O

 	
 	OSIA

P

 	
 	PR

U

 	
 	UIN

 _static/up.png

_static/up-pressed.png

_images/plantuml-1aa0ceec227cb61f009bd16f165003fce305d7c5.png
N

citizen Bank attendant

| Gotosgency |

‘gethttrbuteset (UIN, attribute st name]

ostttributeset (UM attributesetrame)]

List of sttributes values

Third Party| PR

verifyldentity(UIN, biometric o civil data or credentia :

getpersonatributes(UIN)

filkin attributes in bank account)

_images/plantuml-12bc3e1354392d503c9f927f8008fbd24b7fc241.png
Notification|
Emitter Engine Subscriber’

First step Is to create the topic)

create topic(nam
wid
Y

Then a system can subscribe for events published on that topic 1)

subscribeltopic,URL)

-

o
L

Tater

confirm the address before the subscription is active)

notifytoker) N

< Sebscribe_Caltoken) |

ok N

o
T T
it is now possible to publish notification Y
publizh(mezzage).
store

ok

Tsubscriptions]

subseribe CB(messagel

ok

_images/plantuml-1fd29e28292bea63b31951de1d21048346e2a5b7.png
CR PR

CRcan get UINfrom PR_ 1)

1 getpersonUiN(lattributes]) !
ostrersonUiNllauributes]) |
o ;

PR can get UIN from CR_ 1)

| setPersonUN(attributes]) |
g

e 4

_images/plantuml-1cbbc7337bc7040b9ca2cedff61445c047e75bf2.png
cr|[PR

UIN Generator|

CR can request a new UIN N

1 createUin(attributes])

|

Lo

' un

=

PR can request anew UN__)

| cresteU(atiributes)

_images/plantuml-42b711ad4ce68122e423244c5b8b11949a43846a.png
CR PR

CR can match person's attributes in PR

| matchpersonatributes(UiN attributes]) |
matchPersonttributes(Ulatiributes]))

[— :

PR can match person's attributes in CR_1)

| matchPersonattributes(UIN ttributes]) |

Ynvtreasons.

g

_images/plantuml-67d7602bc5094db2890d4c27a27c1673d12cd3ba.png
CR PR | | UIN Generator|

Mother or Father

1 Checks

matchPersonattributes(mother attributes)
[matchPerzonAttributes(mother attributes) .|

matchPersonattributes(father attributes)

oetpersonatiributes(mother)
ostPersonittributesimother) |

oetpersonatributesifather)
ostPersondttributestfather) |

etPersonUiN(new born attributes)
[LgstPerzonUiinew born sttributes) |

Addtionsl checks

e

createuing

[[register the birth &

3. Notification

T ooty teithuma

getpersonatributes(new born)

etpersonatiributes(mother)

oetpersonatributesifather)

create/update identities

nav.xhtml

 Table of Contents

 		
 OSIA Specification

 		
 Introduction

 		
 Problem Statement: vendor lock-in

 		
 The OSIA Initiative

 		
 Diffusion, Audience, and Access

 		
 Document Overview

 		
 Convention and Typographical Rules

 		
 Revision History

 		
 Functional View

 		
 Components: Standardized Definition and Scope

 		
 Interfaces

 		
 Components vs Interfaces Mapping

 		
 Use Cases - How to Use OSIA

 		
 Birth Use Case

 		
 Death Use Case

 		
 Marriage Use Case

 		
 Deduplication

 		
 ID Card Request

 		
 Bank account opening Use Case

 		
 Police identity control Use Cases

 		
 Security & Privacy

 		
 Introduction

 		
 Virtual UIN

 		
 Authorization

 		
 GDPR

 		
 OSIA Versions & Referencing

 		
 Interfaces

 		
 Notification

 		
 Services

 		
 Dictionaries

 		
 Data Access

 		
 Services

 		
 Dictionaries

 		
 UIN Management

 		
 Services

 		
 Biometrics

 		
 Services

 		
 Options

 		
 Data Model

 		
 Document Services

 		
 Third Party Services

 		
 Services

 		
 Components

 		
 Enrolment Component

 		
 Population Registry

 		
 Notification

 		
 Data Access

 		
 Civil Registry

 		
 Notification

 		
 Data Access

 		
 UIN Generator

 		
 UIN Management

 		
 ABIS

 		
 Biometrics

 		
 Document Management System

 		
 Third Party

 		
 Third Party Services

 		
 Annexes

 		
 Glossary

 		
 Data Format

 		
 Technical Specifications

 		
 Notification

 		
 UIN Management

 		
 Data Access

 		
 Biometrics

 		
 Third Party Services

_images/plantuml-bc3be72cff39291cd7626fdf4523059501ed58fe.png
CR PR

CR can verffy person’s attributes in PR 1)

T ———
[——
Lw :

PR can verify person's attributes in CR_™)

| < verifyPersonatributes(UiN expressions]) |
Y

! >

_images/plantuml-9f81114a9f3a63a9679b3b214fd1b08393fc8156.png
Third Party| | ABIS PR

citizen Policeman

| Show 1 card ; |
[|

| Capture fingerpring

gethttributeset (UINL, attribute set name]
[[gethttributeset (UNL, attribute set name) |

oetpersonatibutes(Uny)

List of sttributes values

etattributeset (UIN2, attribute set name)

> :

oetpersonatiibutes(UIN2)
List of ttributes values |
e — |
gethttributeset (UIN3, attribute set name) |
s |

oetpersonatiributes(UINS)
. a—

| tistofatuibutesvalves | |[display attributes for each candidates

_images/plantuml-d1907e0a56e78612e4b69a6555d1b85467eea1b1.png
CR PR

CR can request person’s attributes from PR

1 getpersonattributes(UiN [names]) |
ostrersonattributes(Uiilnames])

— :

PR can request person's attrbutes from CR_ 1)

| SetPersonattributes(UI [rames]) |

sttributes

-

_images/plantuml-cdfa756cabb5d6edf903b01ce044ee7ecb7d292e.png
PR CR
sesuplicatel)
notify(duplicate [UIN])

Llrssfozep e lonn |

_ setPersontributestut)

merge()

mergelregiter duplicate)

_images/plantuml-d354f760de08bedc00f496734836bb98bd5b4611.png
CR PR

CRcan get a document from PR 1

1 getDocument([UIN] documentType format) . !
(etbeemertilib ocebmertTyesfomats
i documents))

PR can get a document from CR

| SetDocument(IUIN] documentType format) |
Ldocuments]

g

_static/ajax-loader.gif

_images/plantuml-fa8bb096e593943fcb60ad32ab0f89a24f11afaf.png
(©) Fitters

©cnadare @it |, [@i | [
intrank 77 [Sting subjectin: string galleryiD: it
ot fikeravax:
. CandidateScore .Conte)(tua\Data . e — .smgrapmcnata
Siing encounterd: et —<{sing encountern o TR fo
Znum biamelricType: date felds: fring encounterType: | | date ilds:
“num biometricsubType: B

© sometronts

© Fnger © Fam © porear ©

byte[] fingerimage: bytel] palmimage:
URL fingerimageRef; URL palmimageRef;

bytel] portraitimage: bytel] risimage:
URL portraitimageRef; URL irisimageRef:

.Temp\ate

byte[] buffer;
string format:

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/file.png

_static/down.png

_static/plus.png

_static/minus.png

