
Specifications version 3.0.0

Contents

1 Introduction 1
1.1 Problem Statement: vendor lock-in . 1
1.2 The OSIA Initiative . 2
1.3 Diffusion, Audience, and Access . 3
1.4 Document Overview . 3
1.5 Convention and Typographical Rules . 3
1.6 Revision History . 4

2 Functional View 5
2.1 Components: Standardized Definition and Scope . 5
2.2 Interfaces . 7
2.3 Components vs Interfaces Mapping . 10
2.4 Use Cases - How to Use OSIA . 11

2.4.1 Birth Use Case . 12
2.4.2 Death Use Case . 13
2.4.3 Marriage Use Case . 13
2.4.4 Deduplication Use Case . 13
2.4.5 ID Card Request Use Case . 13
2.4.6 Bank account opening Use Case . 14
2.4.7 Police identity control Use Case . 14

3 Security & Privacy 15
3.1 Introduction . 15
3.2 Virtual UIN . 15
3.3 Authorization . 15
3.4 GDPR . 15

4 OSIA Versions & Referencing 16

5 Interfaces 17
5.1 Notification . 17

5.1.1 Services . 18
5.1.2 Dictionaries . 19

5.2 Data Access . 19
5.2.1 Services . 19
5.2.2 Dictionaries . 22

5.3 UIN Management . 23
5.3.1 Services . 23

5.4 Enrollment Services . 24
5.4.1 Services . 24
5.4.2 Filter . 25

i

5.4.3 Transaction ID . 25
5.4.4 Data Model . 26

5.5 Population Registry Services . 26
5.5.1 Services . 26
5.5.2 Data Model . 30

5.6 Biometrics . 31
5.6.1 Services . 32
5.6.2 Options . 36
5.6.3 Data Model . 36

5.7 Credential Services . 37
5.7.1 Services . 37

5.8 ID Usage . 39
5.8.1 Services . 39

5.9 Under discussion . 40
5.9.1 Services . 40
5.9.2 Filter . 44
5.9.3 Transaction ID . 44
5.9.4 Data Model . 45

6 Components 46
6.1 Enrollment Component . 46

6.1.1 Enrollment Services . 46
6.2 Population Registry . 48

6.2.1 Notification . 48
6.2.2 Data Access . 50
6.2.3 Population Registry Services . 54

6.3 Civil Registry . 60
6.3.1 Notification . 60
6.3.2 Data Access . 62

6.4 UIN Generator . 66
6.4.1 UIN Management . 66

6.5 ABIS . 67
6.5.1 Biometrics . 67

6.6 Credential Management System . 73
6.6.1 Credential Services . 73

6.7 Third Party Services . 75
6.7.1 ID Usage . 75

7 Annexes 77
7.1 Glossary . 77
7.2 Data Format . 78
7.3 Technical Specifications . 78

7.3.1 Notification . 78
7.3.2 UIN Management . 86
7.3.3 Data Access . 87
7.3.4 Population Registry Management . 92
7.3.5 Biometrics . 106
7.3.6 Third Party Services . 137

HTTP Routing Table 140

Index 141

ii

CHAPTER 1

Introduction

1.1 Problem Statement: vendor lock-in

Target 16.9 of the UN Sustainable Development Goals is to “provide legal identity for all, including birth regis-
tration” by the year 2030. But there is a major barrier: the lack of vendor/provider and technology neutrality -
commonly known as “vendor lock-in”.

The lack of vendor and technology neutrality and its consequences becomes apparent when a customer needs to
replace one component of the identity management solution with one from another provider, or expand the scope
of their solution by linking to new components. Main technology barriers are the following:

1. Solution architectures are not interoperable by design. The lack of common definitions as to the overall
scope of an identity ecosystem, as well as in the main functionalities of a system’s components (civil registry,
biometric identification system, population registry etc.), blurs the lines between components and leads to
inconsistencies. This lack of so-called irreducibly modular architectures makes it difficult, if not impossible,
to switch to a third-party component intended to provide the same function and leads to incompatibilities
when adding a new component to an existing ecosystem.

2. Standardized interfaces (APIs) do not exist. Components are often unable to communicate with each other
due to varying interfaces (APIs) and data formats, making it difficult to swap out components or add new
ones to the system.

For government policy makers tasked with implementing national identification systems, vendor lock-in is now
one of their biggest concerns.

1

OSIA, Release 3.0.0

Fig. 1.1: The dependency challenge

1.2 The OSIA Initiative

Launched by the not-for-profit Secure Identity Alliance, Open Standard Identity APIs (OSIA) is an initiative
created for the public good to address vendor lock-in problem.

OSIA addresses the vendor lock-in concern by providing a simple, open standards-based connectivity layer be-
tween all key components within the national identity ecosystem.

OSIA scope is as follows:

1. Address the lack of common definitions within the identity ecosystem – NON PRESCRIPTIVE

Components of the identity ecosystem (civil registry, population registry, biometric identification
system etc.) from different vendors are functionally incompatible due to the absence of a common
definition/understanding of broader functionalities and scope.

OSIA first step has been to formalize definitions, scope and main functionalities of each component
within the identity ecosystem.

2. Create a set of standardized interfaces – PRESCRIPTIVE

This core piece of work develops the set of interfaces and standardized data formats to connect the
multiple identity ecosystem components to ensure seamless interaction via pre-defined services.

Process of interaction among components (hence type of services each component implements) is
down to each government to define and implement according to local laws and regulations.

With OSIA, governments are free to select the components they need, from the suppliers they choose – without
fear of lock in.

And because OSIA operates at the interface layer, interoperability is assured without the need to rearchitect envi-
ronments or rebuild solutions from the ground up. ID ecosystem components are simply swapped in and out as
the use case demands – from best-of-breed options already available on the market.

1.2. The OSIA Initiative 2

OSIA, Release 3.0.0

This real-world approach dramatically reduces operational and financial risk, increases the effectiveness of existing
identity ecosystems, and rapidly moves government initiatives from proof of concept to live environments.

1.3 Diffusion, Audience, and Access

This specification is hosted in GitHub and can be downloaded from ReadTheDocs.

This specification is licensed under The MIT License.

Any country, technology partner or individual is free to download the functional and technical specifications to
implement it in their customized foundational and sectoral ID systems or components. Governments can also
reference OSIA as Open Standards in tenders. For more information on how to reference OSIA please see Section
OSIA Versions & Referencing.

1.4 Document Overview

This document aims at:

• formalizing definitions, scope and main functionalities of each component within the identity ecosystem,

• defining standardized interfaces and data format to connect the multiple ecosystem components to ensure
seamless interaction via pre-defined services.

This document is structured as follows:

• Chapter 1 Introduction: This chapter introduces the problem statement and the OSIA initiative.

• Chapter 2 Functional View: This chapter provides an overview of OSIA interfaces and how they can be
mapped against the various identity ecosystem components. Finally, the chapter describes a series of use
cases where different OSIA interfaces are implemented between multiple identity ecosystem components.

• Chapter 3 Security and Privacy: This chapter lists a set of Privacy and Security features embedded in OSIA
interfaces specifications.

• Chapter 4 OSIA Versions and Referencing: This chapter describes the way OSIA interfaces can be refer-
enced in documents and tenders.

• Chapter 5 Interfaces: This chapter describes the specifications of all OSIA interfaces.

• Chapter 6 Components: This chapter describes OSIA interfaces that each component of the identity ecosys-
tem may implement.

1.5 Convention and Typographical Rules

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in
RFC 2119.

Code samples highlighted in blocks appear like that:

{
"key": "value",
"another_key": 23

}

Note: Indicates supplementary explanations and useful tips.

1.3. Diffusion, Audience, and Access 3

https://github.com/SecureIdentityAlliance/osia
https://osia.readthedocs.io/en/latest/
https://opensource.org/licenses/MIT
http://www.ietf.org/rfc/rfc2119.txt

OSIA, Release 3.0.0

Warning: Indicates that the specific condition or procedure must be respected.

1.6 Revision History

Version Date Notes
1.0.0 2018-12 First release
3.0.0 2019-06 Second release

1.6. Revision History 4

CHAPTER 2

Functional View

2.1 Components: Standardized Definition and Scope

OSIA provides seamless interconnection between multiple components part of the identity ecosystem.

The components are defined as follows:

• The Enrollment component.

Enrollment is defined as a system to register biographic and biometric data of individuals.

• The Population Registry (PR) component.

Population registry is defined as “an individualized data system, that is, a mechanism of continuous record-
ing, or of coordinated linkage, of selected information pertaining to each member of the resident population
of a country in such a way to provide the possibility of determining up-to-date information concerning the
size and characteristics of that population at selected time intervals. The population register is the product
of a continuous process, in which notifications of certain events, which may have been recorded originally
in different administrative systems, are automatically linked on a current basis. A. method and sources of
updating should cover all changes so that the characteristics of individuals in the register remain current.
Because of the nature of a population register, its organization, and also its operation, must have a legal
basis.”1

• The UIN Generator component.

UIN generator is defined as a system to generate and manage unique identifiers.

• The Automated Biometric Identification System (ABIS) component.

An ABIS is defined as a system to detect the identity of an individual when it is unknown, or to verify the
individual’s identity when it is provided, through biometrics.

• The Civil Registry (CR) component.

Civil registration is defined as “the continuous, permanent, compulsory and universal recording of the oc-
currence and characteristics of vital events pertaining to the population, as provided through decree or reg-
ulation is accordance with the legal requirement in each country. Civil registration is carried out primarily

1 Handbook on Civil Registration and Vital Statistics Systems: Management, Operation and Maintenance, Revision 1, United Nations,
New York, 2018, available at: https://unstats.un.org/unsd/demographic-social/Standards-and-Methods/files/Handbooks/crvs/crvs-mgt-E.pdf ,
para 65.

5

https://unstats.un.org/unsd/demographic-social/Standards-and-Methods/files/Handbooks/crvs/crvs-mgt-E.pdf

OSIA, Release 3.0.0

for the purpose of establishing the documents provided by the law.”2

• The Credential Management System (CMS) component.

CMS is defined as a system to manage the production and issuance of credentials such as ID Cards, pass-
ports, driving licenses, digital ID, etc.

• The Third Party Services component.

TBD

Table 2.1: Components
ID Ecosystem Component Data Functions
Enrollment

• Alpha
• UIN
• History
• Supporting documents

• Recording application
• Collecting personal data

PR
• Alpha
• UIN
• History
• Supporting documents

• Identity attributes storage
• Identity Life cycle manage-

ment

UIN Gen
• Alpha
• UIN

• UIN generation

ABIS
• UIN
• Biometric data (images and

templates)

• Authentication (1:1)
• Identification (1:N)
• Quality control and adjudi-

cation

CR
• Events
• UIN
• History
• Supporting documents

• Events storage
• Certificate production
• Workflow

CMS
• Alpha
• UIN
• History
• Supporting documents

• Credential data storage
• Credential Life cycle man-

agement
• Credential Production
• Workflow
• SMS and email server

Third Party Services TBD KYC/auth

The components are represented on the following diagram:

2 Principles and Recommendations for a Vital Statistics System, United Nations publication Sales Number E.13.XVII.10, New York, 2014,
paragraph 279

2.1. Components: Standardized Definition and Scope 6

OSIA, Release 3.0.0

ENROLLMENT THIRD PARTIES

SERVICES
Population

Registry

(PR)

UIN

Generator

Biometric

System

(ABIS)

Civil

Registry

(CR)

Credential

Management

System (CMS)

Enrol.

Client
Enrol.

Server

OSIA

Private sector
(banks, telcos, etc.)

Identity

Provider

Government
(social security, tax

agency, etc.)

Fig. 2.1: Components identified as part of the identity ecosystem

2.2 Interfaces

This chapter describes the following interfaces:

• Notification

A set of services to manage notifications for different types of events as for instance birth and death.

• Data access

A set of services to access data.

The design is based on the following assumptions:

1. All persons recorded in a registry have a UIN. The UIN can be used as a key to access person data for
all records. Please note that the UIN is the same throughout all registries (see Chapter 3 - Security &
Privacy).

2. The registries (civil, population, or other) are considered as centralized systems that are connected.
If one registry is architectured in a decentralized way, one of its component must be centralized,
connected to the network, and in charge of the exchanges with the other registries.

3. Since the registries are customized for each business needs, dictionaries must be explicitly defined to
describe the attributes, the event types, and the document types. See Data Access for samples of those
dictionaries.

4. The relationship parent/child is not mandatory in the population registry. A population registry im-
plementation may manage this relationship or may ignore it and rely on the civil registry to manage
it.

5. All persons are stored in the population registry. There is no record in the civil registry that is not also
in the population registry.

• UIN Management

A set of services to manage the unique identifier.

• Enrollment Services

A set of services to manage biographic and biometric data upon collection.

• Population Registry Services

A set of services to manage a registry of the population.

• Biometrics

A set of services to manage biometric data and databases.

2.2. Interfaces 7

OSIA, Release 3.0.0

• Credential Services

A set of services to manage credentials, physical and digital.

• ID Usage

A set of services implemented on top of identity systems to favour third parties consumption of identity
data.

• Under discussion

A set of services under discussion and not yet linked to any specific tag.

The following table describes in detail the interfaces and associated services.

Table 2.2: Interfaces List
Services Description
Notification
Subscribe Subscribe a URL to receive notifications sent to one topic
Unsubscribe Unsubscribe a URL from the list of receiver for one topic
Confirm Confirm that the URL used during the subscription is valid
Publish Notify of a new event all systems that subscribed to this topic
Data Access
Read Person Attributes Read person attributes
Match Person Attributes Check the value of attributes without exposing private data
Verify Person Attributes Evaluate simple expressions on person’s attributes without exposing private

data
Query Person UIN Query the persons by a set of attributes, used when the UIN is unknown
Query Person List Query the persons by a list of attributes and their values
Read document Read in a selected format (PDF, image, etc.) a document such as a marriage

certificate
UIN Management
Generate UIN Generate a new UIN
Enrollment Services
Create Person Insert a new person
Read Person Retrieve the attributes of a person
Update Person Update a person
Delete Person Delete a person
Find People Retrieve a list of people who match passed in search criteria
Population Registry Services
Create Person Create a new person
Read Person Read the attributes of a person
Update Person Update a person
Delete Person Delete a person and all its identities
Create Identity Create a new identity in a person
Read Identity Read one or all the identities of one person
Update Identity Update an identity. An identity can be updated only in the status claimed
Partial Update Identity Update part of an identity. Not all attributes are mandatory.
Delete Identity Delete an identity
Set Identity Status Set an identity status
Define Reference Define the reference identity of one person
Read Reference Read the reference identity of one person
Read Galleries Read the ID of all the galleries
Read Gallery Content Read the content of one gallery, i.e. the IDs of all the records linked to this

gallery
Biometrics
Create Create a new encounter. No identify is performed
Read Read the data of an encounter

Continued on next page

2.2. Interfaces 8

OSIA, Release 3.0.0

Table 2.2 – continued from previous page
Update Update an encounter
Delete Delete an encounter
Read Template Read the generated template
Read Galleries Read the ID of all the galleries
Read Gallery content Read the content of one gallery, i.e. the IDs of all the records linked to this

gallery
Identify Identify a person using biometrics data and filters on biographic or contextual

data
Verify Verify an identity using biometrics data
Credential Services
Create Credential Request issuance of a secure document / credential
Read Credential Issuance Retrieve the data/status of an issuance
Update Credential Update the requested issuance of a secure document / credential
Delete Credential Delete/cancel the requested issuance of a secure document / credential
Read Credential Retrieve the attributes/status of an issued credential (smart card, mobile,

passport, etc.)
Suspend Credential Suspend an issued credential. For electronic credentials this will suspend

any PKI certificates that are present
Unsuspend Credential Unsuspend an issued credential. For electronic credentials this will unsus-

pend any PKI certificates that are present
Cancel Credential Cancel an issued credential. For electronic credentials this will revoke any

PKI certificates that are present
ID Usage
Verify ID Verify Identity based on UIN and set of attributes (biometric data, demo-

graphics, credential)
Identify Identify a person based on a set of attributes (biometric data, demographics,

credential)
Read Attributes Read person attributes
Read Attributes set Read person attributes corresponding to a predefined set name
Under discussion
List Credential Profiles Retrieve the list of credential profiles
Read Credential Profiles Retrieve the credential profile
Create Document Add a new document for a person
Read Document Retrieve document data
Update Document Update a document for a person
Delete Document Delete a document for a person
Update Document Val Status Updates the status of a document validation
Read Document Val Status Retrieve the status of a document validation
Create Biometric Add a new biometric for a person
Read Biometric Metadata Retrieve biometric data
Update Biometric Update a biometric for a person
Delete Biometric Delete a biometric for a person
Update Biometric Val Status Updates the status of a biometric validation
Read Biometric Val Status Retrieve the status of a biometric validation
Create Biographic Add a new biographic for a person
Read Biographic Retrieve biographic data
Update Biographic Update a biographic for a person
Delete Biographic Delete a biographic for a person
Update Biographic Val Status Updates the status of a biographic validation
Read Biographic Val Status Retrieve the status of a biographic validation

2.2. Interfaces 9

OSIA, Release 3.0.0

2.3 Components vs Interfaces Mapping

The interfaces described in the following chapter can be mapped against ID ecosystem components as per the
table below:

Table 2.3: Components vs Interfaces Mapping
Components

Interfaces Enroll PR UIN
Gen

ABIS CR CMS 3rd PS

Notification
Subscribe U U U U
Unsubscribe U U U U
Confirm
Publish I I I I
Data Access
Read Person Attributes U IU U IU U
Match Person Attributes U IU IU U
Verify Person Attributes U IU IU U
Query Person UIN U IU IU
Query Person List U
Read Document U IU IU
UIN Management
Generate UIN U I U
Enrollment Services
Create Person I
Read Person I
Update Person I
Delete Person I
Find People I
Population Registry Services
Create Person I I U
Read Person I I U U
Update Person I I U
Delete Person I I U
Create Identity I
Read Identity I
Update Identity I
Partial Update Identity I
Delete Identity I
Set Identity Status I
Define Reference I
Read Reference I
Read Galleries I
Read Gallery Content I
Biometrics
Create U U I
Read U U I U
Update U U I
Delete U U I
Read Template U U I
Read Galleries
Read Gallery Content U U I
Identify U I U
Verify U I U

Continued on next page

2.3. Components vs Interfaces Mapping 10

OSIA, Release 3.0.0

Table 2.3 – continued from previous page
Components

Interfaces Enroll PR UIN
Gen

ABIS CR CMS 3rd PS

Credential Services
Create Credential
Read Credential Issuance
Update Credential
Delete Credential
Read Credential
Suspend Credential
Unsuspend Credential
Cancel Credential
ID Usage
Verify ID I
Identify ID I
Read Attributes I
Read Attributes set I
Under discussion
List Cred Profiles
Read Cred Profiles
Create Document
Read Document
Update Document
Delete Document
Update Document Val Status
Read Document Val Status
Create Biometric
Read Biometric Metadata
Update Biometric
Delete Biometric
Update Biometric Val Status
Read Biometric Val Status
Create Biographic
Read Biographic
Update Biographic
Delete Biographic
Update Biographic Val Status
Read Biographic Val Status

where:

• I is used when a service is implemented (provided) by a component

• U is used when a service is used (consumed) by a component

2.4 Use Cases - How to Use OSIA

Below are a set of examples of how OSIA interfaces could be implemented in various use cases.

2.4. Use Cases - How to Use OSIA 11

OSIA, Release 3.0.0

2.4.1 Birth Use Case

Fig. 2.2: Birth Use Case

1. Checks

When a request is submitted, the CR may run checks against the data available in the PR using:

• matchPersonAttributes: to check the exactitude of the parents’ attributes as known in the PR

• readPersonAttributes: to get missing data about the parents’s identity

• qureyPersonUIN: to check if the new born is already known to PR or not

How the CR will process the request in case of data discrepancy is specific to each CR implementation and
not in the scope of this document.

2. Creation

The first step after the checks is to generate a new UIN. To do so, the CR requests a new UIN to the PR
using generateUIN service. At this point the birth registration takes place. How the CR will process the
birth registration is specific to each CR implementation and not in the scope of this document.

3. Notification

As part of the birth registration, it is the responsibility of the CR to notify other systems, including the PR,
of this event using:

• publish: to send a birth along with the new UIN.

The PR, upon reception of the birth event, will update the identity registry with this new identity using:

• readPersonAttributes: to get the attributes of interest to the PR for the parents if relevant and
the new child.

2.4. Use Cases - How to Use OSIA 12

OSIA, Release 3.0.0

2.4.2 Death Use Case

To be completed

2.4.3 Marriage Use Case

To be completed

2.4.4 Deduplication Use Case

During the lifetime of a registry, it is possible that duplicates are detected. This can happen for instance after the
addition of biometrics in the system. When a registry considers that two records are actually the same and decides
to merge them, a notification must be sent.

Fig. 2.3: Deduplication Use Case

How the target of the notification should react is specific to each subsystem.

2.4.5 ID Card Request Use Case

To be completed

2.4. Use Cases - How to Use OSIA 13

OSIA, Release 3.0.0

2.4.6 Bank account opening Use Case

Fig. 2.4: Bank account opening Use Case

2.4.7 Police identity control Use Case

Fig. 2.5: Collaborative identity control

2.4. Use Cases - How to Use OSIA 14

CHAPTER 3

Security & Privacy

3.1 Introduction

Insert diagram of security & privacy features

3.2 Virtual UIN

Explain: using a different UIN in each subsystem - no direct/easy links between the records in different subsystems

3.3 Authorization

To be completed

3.4 GDPR

To be completed

15

CHAPTER 4

OSIA Versions & Referencing

There will be a version for each interface. Each interface can be referenced in tenders as follows:

OSIA - [interface name] v. [version number]

For instance below is the string to reference the Notification interface:

OSIA - Notification v. 1.0.0

Below is the complete list of available interfaces with related version to date:

• OSIA - Notification - v. 3.0.0

• OSIA - Data Access - v. 3.0.0

• OSIA - UIN Management - v. 3.0.0

• OSIA - Enrollment Services - v. 3.0.0

• OSIA - Identity Management - v. 3.0.0

• OSIA - Population Registry Services - v. 3.0.0

• OSIA - Biometrics - v. 3.0.0

• OSIA - Credential Services - v. 3.0.0

• OSIA - ID Usage - v. 3.0.0

This document proposes as well a set of interfaces that could be used by each component (non-prescriptive).

As a consequence, it is possible to reference directly that set of interfaces bundled with a given component. It is
possible to reference the bundle of these interfaces as follows:

OSIA - [component name] v. [version number]

For instance for Civil Registry (CR) OSIA proposes the following set of interfaces:

• OSIA - Notifications - v. 1.0.0

• OSIA - Data Access - v. 1.0.0

Below is the string to reference this set of interfaces linked to CR:

OSIA - CR v. 1.0.0

16

CHAPTER 5

Interfaces

The chapter below describes the specifications of all OSIA interfaces and related services.

5.1 Notification

See Notification for the technical details of this interface.

The subscription & notification process is managed by a middleware and is described in the following diagram:

17

OSIA, Release 3.0.0

Fig. 5.1: Subscription & Notification Process

5.1.1 Services

subscribe(topic, URL)
Subscribe a URL to receive notifications sent to one topic

Parameters

• topic (str) – Topic

• URL (str) – URL to be called when a notification is available

Returns a subscription ID

This service is synchronous.

unsubscribe(id)
Unsubscribe a URL from the list of receiver for one topic

Parameters id (str) – Subscription ID

Returns bool

This service is synchronous.

confirm(token)
Confirm that the URL used during the subscription is valid

Parameters token (str) – A token send through the URL.

Returns bool

This service is synchronous.

5.1. Notification 18

OSIA, Release 3.0.0

publish(topic, subject, message)
Notify of a new event all systems that subscribed to this topic

Parameters

• topic (str) – Topic

• subject (str) – The subject of the message

• message (str) – The message itself (a string buffer)

Returns N/A

This service is asynchronous (systems that subscribed on this topic are notified asynchronously).

5.1.2 Dictionaries

As an example, below there is a list of events that each component might handle.

Table 5.1: Event Type
Event Type Emitted by CR Emitted by PR
Live birth XXX
Death XXX
Fœtal Death XXX
Marriage XXX
Divorce XXX
Annulment XXX
Separation, judicial XXX
Adoption XXX
Legitimation XXX
Recognition XXX
Change of name XXX
Change of gender XXX
New person XXX
Duplicate person XXX XXX

5.2 Data Access

See Data Access for the technical details of this interface.

5.2.1 Services

readPersonAttributes(UIN, names)
Read person attributes.

Authorization: To be defined

Parameters

• UIN (str) – The person’s UIN

• names (list[str]) – The names of the attributes requested

Returns a list of pair (name,value). In case of error (unknown attributes, unauthorized access,
etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

5.2. Data Access 19

OSIA, Release 3.0.0

Fig. 5.2: readPersonAttributes Sequence Diagram

matchPersonAttributes(UIN, attributes)
Match person attributes. This service is used to check the value of attributes without exposing private data.
The implementation can use a simple comparison or a more advanced technique (for example: phonetic
comparison for names)

Authorization: To be defined

Parameters

• UIN (str) – The person’s UIN

• attributes (list[(str,str)]) – The attributes to match. Each attribute is
described with its name and the expected value

Returns If all attributes match, a Yes is returned. If one attribute does not match, a No is returned
along with a list of (name,reason) for each non-matching attribute.

This service is synchronous. It can be used to match attributes in CR or in PR.

Fig. 5.3: matchPersonAttributes Sequence Diagram

verifyPersonAttributes(UIN, expressions)
Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s at-
tributes without exposing private data The implementation can use a simple comparison or a more advanced
technique (for example: phonetic comparison for names)

Authorization: To be defined

Parameters

• UIN (str) – The person’s UIN

• expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=)
and the attribute value

5.2. Data Access 20

OSIA, Release 3.0.0

Returns A Yes if all expressions are true, a No if one expression is false, a Unknown if
To be defined

This service is synchronous. It can be used to verify attributes in CR or in PR.

Fig. 5.4: verifyPersonAttributes Sequence Diagram

queryPersonUIN(attributes)
Query the persons by a set of attributes. This service is used when the UIN is unknown. The implementation
can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: To be defined

Parameters attributes (list[(str,str)]) – The attributes to be used to find UIN.
Each attribute is described with its name and its value

Returns a list of matching UIN

This service is synchronous. It can be used to get the UIN of a person.

Fig. 5.5: queryPersonUIN Sequence Diagram

queryPersonList(attributes, names)
Query the persons by a list of attributes and their values. This service is proposed as an optimization of a
sequence of calls to queryPersonUIN() and readPersonAttributes().

Authorization: To be defined

Parameters

• attributes (list[(str,str)]) – The attributes to be used to find the persons.
Each attribute is described with its name and its value

• names (list[str]) – The names of the attributes requested

Returns a list of lists of pairs (name,value). In case of error (unknown attributes, unauthorized
access, etc.) the value is replaced with an error

5.2. Data Access 21

OSIA, Release 3.0.0

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

Fig. 5.6: queryPersonList Sequence Diagram

readDocument(UINs, documentType, format)
Read in a selected format (PDF, image, . . .) a document such as a marriage certificate.

Authorization: To be defined

Parameters

• UIN (list[str]) – The list of UINs for the persons concerned by the document

• documentType (str) – The type of document (birth certificate, etc.)

• format (str) – The format of the returned/requested document

Returns The list of the requested documents

This service is synchronous. It can be used to get the documents for a person.

Fig. 5.7: readDocument Sequence Diagram

5.2.2 Dictionaries

As an example, below there is a list of attributes/documents that each component might handle.

5.2. Data Access 22

OSIA, Release 3.0.0

Table 5.2: Person Attributes
Attribute Name In CR In PR Description
UIN XXX XXX
first name XXX XXX
last name XXX XXX
spouse name XXX XXX
date of birth XXX XXX
place of birth XXX XXX
gender XXX XXX
date of death XXX XXX
place of death XXX
reason of death XXX
status XXX Example: missing, wanted, dead, etc.

Table 5.3: Certificate Attributes
Attribute Name In CR In PR Description
officer name XXX
number XXX
date XXX
place XXX
type XXX

Table 5.4: Union Attributes
Attribute Name In CR In PR Description
date of union XXX
place of union XXX
conjoint1 UIN XXX
conjoint2 UIN XXX
date of divorce XXX

Table 5.5: Filiation Attributes
Attribute Name In CR In PR Description
parent1 UIN XXX
parent2 UIN XXX

Table 5.6: Document Type
Document Type Description
birth certificate To be completed

death certificate To be completed

marriage certificate To be completed

5.3 UIN Management

See UIN Management for the technical details of this interface.

5.3.1 Services

generateUIN(attributes)
Generate a new UIN.

5.3. UIN Management 23

OSIA, Release 3.0.0

Authorization: To be defined

Parameters attributes (list[(str,str)]) – A list of pair (attribute name, value) that
can be used to allocate a new UIN

Returns a new UIN or an error if the generation is not possible

This service is synchronous.

Fig. 5.8: generateUIN Sequence Diagram

5.4 Enrollment Services

5.4.1 Services

createPerson(personID, personData, transactionID)
Insert a new person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person. If the person already exists for the ID an
error is returned.

• personData (dict) – The person attributes.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

readPerson(personID, filter, transactionID)
Retrieve the attributes of a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• filter (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error and in case of success the person data.

updatePerson(personID, personData, transactionID)
Update a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personData (dict) – The person data, this can be partial data.

5.4. Enrollment Services 24

OSIA, Release 3.0.0

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

deletePerson(personID, transactionID)
Delete a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

findPeople(filter, transactionID)
Retrieve a list of people who match passed in search criteria.

Authorization: To be defined

Parameters

• filter (dict) – The search criteria to match on.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error and in case of success the matching person list.

5.4.2 Filter

The “filter” parameter used in “read” calls is used to provide a set of identifiers that limit the amount of data that
is returned. It is often the case that the whole data set is not required, but instead, a subset of that data. Where
possible, existing standards based identifiers should be used for the attributes to retrieve.

E.g. For surname/familyname, use OID 2.5.4.4 or id-at-surname.

Some calls may require new filter attributes to be defined. E.g. when retrieving biometric data, the caller may only
want the meta data about that biometric, rather than the actual biometric data.

5.4.3 Transaction ID

The “transactionID” is a string provided by the client application to identity the request being submitted. It is
optional in most cases. When provided, it can be used for tracing and debugging.

5.4. Enrollment Services 25

OSIA, Release 3.0.0

5.4.4 Data Model

Table 5.7: Enrolment Data Model
Type Description Example
Person Person who is known to an identity assurance system. TBD
Document Data a dictionary (list of names and values) giving the doc-

ument data of interest for the document services.
TBD

Biometric Data Digital representation of biometric characteristics.
All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait or iris.

fingerprint, portrait, iris

Biographic Data a dictionary (list of names and values) giving the bio-
graphic data of interest for the biographic services.

TBD

5.5 Population Registry Services

This interface describes services to manage a registry of the population in the context of an identity system. It is
based on the following principles:

• It supports a history of identities, meaning that a person has one identity and this identity has a history.

• Images can be passed by value or reference. When passed by value, they are base64-encoded.

• Existing standards are used whenever possible.

• This interface is complementary to the data access interface. The data access interface is used to query the
persons and uses the reference identity to return attributes.

• The population registry can store the biometric data or can rely on the ABIS subsystem to do it. The
preferred solution, for a clean separation of data of different nature and by application of GDPR principles,
is to put the biometric data only in the ABIS. Yet many existing systems store biometric data with the
biographic data and this specification gives the flexibility to do it.

See Population Registry Management for the technical details of this interface.

5.5.1 Services

createPerson(personID, personData, transactionID)
Create a new person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person. If the person already exists for the ID an
error is returned.

• personData – The person attributes.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

5.5. Population Registry Services 26

OSIA, Release 3.0.0

readPerson(personID, transactionID)
Read the attributes of a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error and in case of success the person data.

updatePerson(personID, personData, transactionID)
Update a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personData (dict) – The person data.

Returns a status indicating success or error.

deletePerson(personID, transactionID)
Delete a person and all its identities.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

createIdentity(personID, identityID, identity, transactionID)
Create a new identity in a person. If no identityID is provided, a new one is generated. If identityID
is provided, it is checked for uniqueness and used for the identity if unique. An error is returned if the
provided identityID is not unique.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity.

• identity – The new identity data.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readIdentity(personID, identityID, transactionID)
Read one or all the identities of one person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personID – The ID of the identity. If not provided, all identities are returned.

5.5. Population Registry Services 27

OSIA, Release 3.0.0

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error, and in case of success a list of identities.

updateIdentity(personID, identityID, identity, transactionID)
Update an identity. An identity can be updated only in the status claimed.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personID – The ID of the identity.

• identity – The identity data.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

partialUpdateIdentity(personID, identityID, identity, transactionID)
Update part of an identity. Not all attributes are mandatory. The payload is defined as per RFC 7396. An
identity can be updated only in the status claimed.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personID – The ID of the identity.

• identity – Part of the identity data.

Returns a status indicating success or error.

deleteIdentity(personID, identityID, transactionID)
Delete an identity.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personID – The ID of the identity.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

setIdentityStatus(personID, identityID, status, transactionID)
Set an identity status.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personID – The ID of the identity.

• status (str) – The new status of the identity.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

5.5. Population Registry Services 28

https://tools.ietf.org/html/rfc7396.html

OSIA, Release 3.0.0

defineReference(personID, identityID, transactionID)
Define the reference identity of one person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personID – The ID of the identity being now the reference.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readReference(personID, transactionID)
Read the reference identity of one person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error and in case of success the reference identity.

readGalleries(transactionID)
Read the ID of all the galleries.

Authorization: To be defined

Parameters transactionID (str) – A free text used to track the system activities related
to the same transaction.

Returns a status indicating success or error, and in case of success a list of gallery ID.

readGalleryContent(galleryID, transactionID)
Read the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: To be defined

Parameters

• galleryID (str) – Gallery whose content will be returned.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error. In case of success a list of person/identity IDs.

5.5. Population Registry Services 29

OSIA, Release 3.0.0

5.5.2 Data Model

Table 5.8: Population Registry Data Model
Type Description Example
Gallery A group of persons related by a common purpose,

designation, or status. A person can belong to mul-
tiple galleries.

VIP, Wanted, etc.

Person Person who is known to an identity assurance system.
A person record has:

• a status, such as active or inactive, defin-
ing the status of the record (the record can be
excluded from queries based on this status),

• a physical status, such as alive or dead,
defining the status of the person,

• a set of identities, keeping track of all identity
data submitted by the person during the life of
the system,

• a reference identity, i.e. a consolidated view
of all the identities defining the current correct
identity of the person. It corresponds usually to
the last valid identity but it can also include data
from previous identities.

N/A

Identity The attributes describing an identity of a person.
An identity has a status such as: claimed (iden-
tity not yet validated), valid (the identity is valid),
invalid (the identity is not valid), revoked (the
identity cannot be used any longer).
An identity can be updated only in the status
claimed.
The allowed transitions for the status are represented
below:

The attributes are separated into two categories: the
biographic data and the contextual data.

N/A

Biographic Data A dictionary (list of names and values) giving the bi-
ographic data of the identity

firstName,
lastName,
dateOfBirth, etc.

Contextual Data A dictionary (list of names and values) attached to the
context of establishing the identity

operatorName,
enrolmentDate, etc.

Biometric Data Digital representation of biometric characteristics.
All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait or iris.

fingerprint, portrait, iris

Document The document data (images) attached to the identity
and used to validate it.

Birth certificate, invoice

5.5. Population Registry Services 30

OSIA, Release 3.0.0

Fig. 5.9: Population Registry Data Model

5.6 Biometrics

This interface describes biometric services in the context of an identity system. It is based on the following
principles:

• It supports only multi-encounter model, meaning that an identity can have multiple set of biometric data,
one for each encounter.

• It does not expose templates (only images) for CRUD services, with one exception to support the use case
of credentials with biometrics.

• Images can be passed by value or reference. When passed by value, they are base64-encoded.

• Existing standards are used whenever possible, for instance preferred image format for biometric data is
ISO-19794.

About synchronous and asynchronous processing

Some services can be very slow depending on the algorithm used, the system workload, etc. Services are described
so that:

• If possible, the answer is provided synchronously in the response of the service.

• If not possible for some reason, a status PENDING is returned and the answer, when available, is pushed to
a callback provided by the client.

If no callback is provided, this indicates that the client wants a synchronous answer, whatever the time it takes.

5.6. Biometrics 31

OSIA, Release 3.0.0

If a callback is provided, the server will decide if the processing is done synchronously or asynchronously.

See Biometrics for the technical details of this interface.

5.6.1 Services

create(personID, encounterID, galleryID, biographicData, contextualData, biometricData, clientData,
callback, transactionID, options)

Create a new encounter. No identify is performed. This service is synchronous.

Authorization: To be defined

Parameters

• personID (str) – The person ID. This is optional and will be generated if not pro-
vided

• encounterID (str) – The encounter ID. This is optional and will be generated if
not provided

• galleryID (list(str)) – the gallery ID to which this encounter belongs. A min-
imum of one gallery must be provided

• biographicData (dict) – The biographic data (ex: name, date of birth, gender,
etc.)

• contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

• biometricData (list) – the biometric data (images)

• clientData (bytes) – additional data not interpreted by the server but stored as is
and returned when encounter data is requested.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
algorithm.

Returns a status indicating success, error, or pending operation. In case of success, the person
ID and the encounter ID are returned. In case of pending operation, the result will be sent
later.

read(personID, encounterID, callback, transactionID, options)
Read the data of an encounter.

Authorization: To be defined

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the person are returned.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of success, the en-
counter data is returned. In case of pending operation, the result will be sent later.

5.6. Biometrics 32

OSIA, Release 3.0.0

update(personID, encounterID, galleryID, biographicData, contextualData, biometricData, callback,
transactionID, options)

Update an encounter.

Authorization: To be defined

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID

• galleryID (list(str)) – the gallery ID to which this encounter belongs. A min-
imum of one gallery must be provided

• biographicData (dict) – The biographic data (ex: name, date of birth, gender,
etc.)

• contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

• biometricData (list) – the biometric data (images)

• clientData (bytes) – additional data not interpreted by the server but stored as is
and returned when encounter data is requested.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
algorithm.

Returns a status indicating success, error, or pending operation. In case of success, the person
ID and the encounter ID are returned. In case of pending operation, the result will be sent
later.

delete(personID, encounterID, callback, transactionID, options)
Delete an encounter.

Authorization: To be defined

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the person are deleted.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of pending operation,
the operation status will be sent later.

readTemplate(personID, encounterID, biometricType, biometricSubType, callback, transactionID, op-
tions)

Read the generated template.

Authorization: To be defined

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID.

• biometricType (str) – The type of biometrics to consider (optional)

5.6. Biometrics 33

OSIA, Release 3.0.0

• biometricSubType (str) – The subtype of biometrics to consider (optional)

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of success, a list of
template data is returned. In case of pending operation, the result will be sent later.

readGalleries(callback, transactionID, options)
Read the ID of all the galleries.

Authorization: To be defined

Parameters

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. A list of gallery ID is returned,
either synchronously or using the callback.

readGalleryContent(galleryID, callback, transactionID, options)
Read the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: To be defined

Parameters

• galleryID (str) – Gallery whose content will be returned.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. A list of persons/encounters is
returned, either synchronously or using the callback.

identify(galleryID, filter, biometricData, callback, transactionID, options)
Identify a person using biometrics data and filters on biographic or contextual data. This may include
multiple operations, including manual operations.

Authorization: To be defined

Parameters

• galleryID (str) – Search only in this gallery.

• filter (dict) – The input data (filters and biometric data)

• biometricData – the biometric data.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

5.6. Biometrics 34

OSIA, Release 3.0.0

Returns a status indicating success, error, or pending operation. A list of candidates is returned,
either synchronously or using the callback.

identify(galleryID, filter, personID, callback, transactionID, options)
Identify a person using biometrics data of a person existing in the system and filters on biographic or
contextual data. This may include multiple operations, including manual operations.

Authorization: To be defined

Parameters

• galleryID (str) – Search only in this gallery.

• filter (dict) – The input data (filters and biometric data)

• personID – the person ID

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A list of candidates is returned,
either synchronously or using the callback.

verify(galleryID, personID, biometricData, callback, transactionID, options)
Verify an identity using biometrics data.

Authorization: To be defined

Parameters

• galleryID (str) – Search only in this gallery. If the person does not belong to this
gallery, an error is returned.

• personID (str) – The person ID

• biometricData – The biometric data

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A status (boolean) is returned,
either synchronously or using the callback. Optionally, details about the matching result can
be provided like the score per biometric and per encounter.

verify(biometricData1, biometricData2, callback, transactionID, options)
Verify that two sets of biometrics data correspond to the same person.

Authorization: To be defined

Parameters

• biometricData1 – The first set of biometric data

• biometricData2 – The second set of biometric data

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
threshold, accuracyLevel.

5.6. Biometrics 35

OSIA, Release 3.0.0

Returns a status indicating success, error, or pending operation. A status (boolean) is returned,
either synchronously or using the callback. Optionally, details about the matching result can
be provided like the score per the biometric.

5.6.2 Options

Table 5.9: Biometric Services Options
Name Description
priority Priority of the request. Values range from 0 to 9
maxNbCand The maximum number of candidates to return.
threshold The threshold to apply on the score to filter the candidates during an identification,

authentication or verification.
algorithm Specify the type of algorithm to be used.
accuracyLevel Specify the accuracy expected of the request. This is to support different use cases,

when different behavior of the ABIS is expected (response time, accuracy, consol-
idation/fusion, etc.).

5.6.3 Data Model

Table 5.10: Biometric Data Model
Type Description Example
Gallery A group of persons related by a common purpose,

designation, or status. A person can belong to mul-
tiple galleries.

TBD

Person Person who is known to an identity assurance system. TBD
Encounter Event in which the client application interacts with

a person resulting in data being collected during or
about the encounter. An encounter is characterized by
an identifier and a type (also called purpose in some
context).

TBD

Biographic Data a dictionary (list of names and values) giving the bio-
graphic data of interest for the biometric services.

TBD

Filters a dictionary (list of names and values or range of val-
ues) describing the filters during a search. Filters can
apply on biographic data, contextual data or encounter
type.

TBD

Biometric Data Digital representation of biometric characteristics.
All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait or iris.

fingerprint, portrait, iris

Candidate Information about a candidate found during an identi-
fication

TBD

CandidateScore Detailed information about a candidate found during
an identification. It includes the score for the biomet-
rics used.

TBD

Template A computed buffer corresponding to a biometric and
allowing the comparison of biometrics. A template
has a format that can be a standard format or a vendor-
specific format.

N/A

5.6. Biometrics 36

OSIA, Release 3.0.0

Fig. 5.10: Biometric Data Model

5.7 Credential Services

5.7.1 Services

createCredential(personID, credentialProfileID, additionalData, transactionID)
Request issuance of a secure document / credential.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• credentialProfileID (str) – The ID of the credential profile to issue to the
person.

• additionalData (dict) – Additional data relating to the requested credential pro-
file, e.g. credential lifetime if overriding default, delivery addresses, etc.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error. In the case of success, an issuance identifier.

readCredentialIssuance(issuanceID, filter, transactionID)
Retrieve the data/status of an issuance.

Authorization: To be defined

Parameters

• issuanceID (str) – The ID of the issuance.

• filter (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The client generated transactionID.

5.7. Credential Services 37

OSIA, Release 3.0.0

Returns a status indicating success or error, and in case of success the issuance data/status.

updateCredential(issuanceID, additionalData, transactionID)
Update the requested issuance of a secure document / credential.

Authorization: To be defined

Parameters

• issuanceID (str) – The ID of the issuance.

• transactionID (string) – The client generated transactionID.

• additionalData (dict) – Additional data relating to the requested credential pro-
file, e.g. credential lifetime if overriding default, delivery addresses, etc.

Returns a status indicating success or error.

deleteCredential(issuanceID, transactionID)
Delete/cancel the requested issuance of a secure document / credential.

Authorization: To be defined

Parameters

• issuanceID (str) – The ID of the issuance.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

readCredential(credentialID, filter, transactionID)
Retrieve the attributes/status of an issued credential. A wide range of information may be returned, depen-
dant on the type of credential that was issued, smart card, mobile, passport, etc.

Authorization: To be defined

Parameters

• credentialID (str) – The ID of the credential.

• filter (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error, in the case of success the requested data will be
returned.

suspendCredential(credentialID, transactionID)
Suspend an issued credential. For electronic credentials this will suspend any PKI certificates that are
present.

Authorization: To be defined

Parameters

• credentialID (str) – The ID of the credential.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

unsuspendCredential(credentialID, transactionID)
Unsuspend an issued credential. For electronic credentials this will unsuspend any PKI certificates that are
present.

Authorization: To be defined

Parameters

• credentialID (str) – The ID of the credential.

5.7. Credential Services 38

OSIA, Release 3.0.0

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

cancelCredential(credentialID, transactionID)
Cancel an issued credential. For electronic credentials this will revoke any PKI certificates that are present.

Authorization: To be defined

Parameters

• credentialID (str) – The ID of the credential.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

5.8 ID Usage

5.8.1 Services

verifyIdentity(UIN[, IDAttribute])
Verify Identity based on UIN and set of Identity Attributes (biometric data, credential, etc.)

Authorization: To be defined

Parameters

• UIN (str) – The person’s UIN

• IDAttribute (list[str]) – A list of list of pair (name,value) requested

Returns Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

identify([inIDAttribute][, outIDAttribute])
Identify a person based on a set of Identity Attributes (biometric data, credential, etc.)

Authorization: To be defined

Parameters

• inIDAttribute (list[str]) – A list of list of pair (name,value) requested

• outIDAttribute (list[str]) – A list of list of attribute names requested

Returns Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

readAttributes(UIN, names)
Read person attributes.

Authorization: To be defined

Parameters

• UIN (str) – The person’s UIN

• names (list[str]) – The names of the attributes requested

Returns a list of pair (name,value). In case of error (unknown attributes, unauthorized access,
etc.) the value is replaced with an error

readAttributeSet(UIN, setName)
Read person attributes corresponding to a predefined set name.

Authorization: To be defined

5.8. ID Usage 39

OSIA, Release 3.0.0

Parameters

• UIN (str) – The person’s UIN

• setName (str) – The name of predefined attributes set name

Returns a list of pair (name,value). In case of error (unknown attributes, unauthorized access,
etc.) the value is replaced with an error

5.9 Under discussion

5.9.1 Services

listCredentialProfiles(filter, transactionID)
Retrieve the list of credential profiles.

Authorization: To be defined

Parameters

• filter (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error, and in case of success the credential profile list.

readCredentialProfile(credentialProfileID, filter, transactionID)
Retrieve the credential profile.

Authorization: To be defined

Parameters

• credentialProfileID (str) – The ID of the credential profile.

• filter (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error, and in case of success the credential profile.

createDocument(personID, documentID, documentData, transactionID)
Add a new document for a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• documentID (str) – The ID of the document.

• documentData – The content and attributes of the document.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error. In the case of success, a document identifier.

readDocument(documentID, filter, transactionID)
Retrieve document data.

Authorization: To be defined

Parameters

• documentID (str) – The ID of the document.

• filter (set) – The (optional) set of required attributes to retrieve.

5.9. Under discussion 40

OSIA, Release 3.0.0

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error, and in case of success the document data.

updateDocument(documentID, documentData, transactionID)
Update a document for a person.

Authorization: To be defined

Parameters

• documentID (str) – The ID of the document.

• documentData – The content and attributes of the document, this can be partial data.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

deleteDocument(documentID, transactionID)
Delete a document for a person.

Authorization: To be defined

Parameters

• documentID (str) – The ID of the document.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

updateDocumentValStatus(documentID, status, transactionID)
Updates the status of a document validation.

Authorization: To be defined

Parameters

• documentID (str) – The ID of the document.

• status – The status of the document validation, e.g. ‘ready’ to validate.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

readDocumentValStatus(documentID, transactionID)
Retrieve the status of a document validation.

Authorization: To be defined

Parameters

• documentID (str) – The ID of the document.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error, and in case of success the document validation
status and its metadata.

createBiometric(personID, biometricID, biometricData, transactionID)
Add a new biometric for a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• biometricID (str) – The ID of the biometric.

• biometricData – The content and attributes of the biometric.

5.9. Under discussion 41

OSIA, Release 3.0.0

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error. In the case of success, a biometric identifier.

readBiometric(biometricID, filter, transactionID)
Retrieve biometric data.

NOTE - do we want this method in the system? We don’t beleive that this data should be retrievable. A
separate method is provided for reading enrolled biometric metadata (see below).

Authorization: To be defined

Parameters

• biometricID (str) – The ID of the biometric.

• filter (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error, and in case of success the biometric data.

readBiometricMetadata(biometricID, filter, transactionID)
Retrieve biometric data.

Authorization: To be defined

Parameters

• biometricID (str) – The ID of the biometric.

• filter (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error, and in case of success the biometric metadata.

updateBiometric(biometricID, biometricData, transactionID)
Update a biometric for a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• biometricID (str) – The ID of the biometric.

• biometricData – The content and attributes of the biometric, this can be partial
data.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

deleteBiometric(biometricID, transactionID)
Delete a biometric for a person.

Authorization: To be defined

Parameters

• biometricID (str) – The ID of the biometric.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

updateBiometricValStatus(biometricID, status, transactionID)
Updates the status of a biometric validation.

Authorization: To be defined

Parameters

5.9. Under discussion 42

OSIA, Release 3.0.0

• biometricID (str) – The ID of the biometric.

• status – The status of the biometric validation, e.g. ‘ready’ to validate.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error, and in case of success the biometric validation
status.

readBiometricValStatus(biometricID, transactionID)
Retrieve the status of a biometric validation.

Authorization: To be defined

Parameters

• biometricID (str) – The ID of the biometric.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error, and in case of success the biometric validation
status and metadata.

createBiographic(personID, biographicID, biographicData, transactionID)
Add a new biographic for a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• biographicID (str) – The ID of the biographic.

• biographicData – The content and attributes of the biographic.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error. In the case of success, a biographic identifier.

readBiographic(biographicID, filter, transactionID)
Retrieve biographic data.

Authorization: To be defined

Parameters

• biographicID (str) – The ID of the biographic.

• filter (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error, and in case of success the biographic data.

updateBiographic(biographicID, biographicData, transactionID)
Update a biographic for a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• biographicID (str) – The ID of the biographic.

• biographicData – The content and attributes of the biographic, this can be partial
data.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

5.9. Under discussion 43

OSIA, Release 3.0.0

deleteBiographic(biographicID, transactionID)
Delete a biographic for a person.

Authorization: To be defined

Parameters

• biographicID (str) – The ID of the biographic.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

updateBiographicValStatus(biographicID, status, transactionID)
Updates the status of a biographic validation.

Authorization: To be defined

Parameters

• biographicID (str) – The ID of the biographic.

• status – The status of the biographic validation, e.g. ‘ready’ to validate.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error, and in case of success the biographic validation
status.

readBiographicValStatus(biographicID, transactionID)
Retrieve the status of a biographic validation.

Authorization: To be defined

Parameters

• biographicID (str) – The ID of the biographic.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error, and in case of success the biographic validation
status and metadata.

5.9.2 Filter

The “filter” parameter used in “read” calls is used to provide a set of identifiers that limit the amount of data that
is returned. It is often the case that the whole data set is not required, but instead, a subset of that data. Where
possible, existing standards based identifiers should be used for the attributes to retrieve.

E.g. For surname/familyname, use OID 2.5.4.4 or id-at-surname.

Some calls may require new filter attributes to be defined. E.g. when retrieving biometric data, the caller may only
want the meta data about that biometric, rather than the actual biometric data.

5.9.3 Transaction ID

The “transactionID” is a string provided by the client application to identity the request being submitted. It is
optional in most cases. When provided, it can be used for tracing and debugging.

5.9. Under discussion 44

OSIA, Release 3.0.0

5.9.4 Data Model

Table 5.11: Enrolment Data Model
Type Description Example
Person Person who is known to an identity assurance system. TBD
Document Data a dictionary (list of names and values) giving the doc-

ument data of interest for the document services.
TBD

Biometric Data Digital representation of biometric characteristics.
All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait or iris.

fingerprint, portrait, iris

Biographic Data a dictionary (list of names and values) giving the bio-
graphic data of interest for the biographic services.

TBD

5.9. Under discussion 45

CHAPTER 6

Components

This chapter describes for each component the interfaces that it MAY implement.

6.1 Enrollment Component

The enrolment component MAY implement the following interfaces:

6.1.1 Enrollment Services

Services

createPerson(personID, personData, transactionID)
Insert a new person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person. If the person already exists for the ID an
error is returned.

• personData (dict) – The person attributes.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

readPerson(personID, filter, transactionID)
Retrieve the attributes of a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• filter (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error and in case of success the person data.

46

OSIA, Release 3.0.0

updatePerson(personID, personData, transactionID)
Update a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personData (dict) – The person data, this can be partial data.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

deletePerson(personID, transactionID)
Delete a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

findPeople(filter, transactionID)
Retrieve a list of people who match passed in search criteria.

Authorization: To be defined

Parameters

• filter (dict) – The search criteria to match on.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error and in case of success the matching person list.

Filter

The “filter” parameter used in “read” calls is used to provide a set of identifiers that limit the amount of data that
is returned. It is often the case that the whole data set is not required, but instead, a subset of that data. Where
possible, existing standards based identifiers should be used for the attributes to retrieve.

E.g. For surname/familyname, use OID 2.5.4.4 or id-at-surname.

Some calls may require new filter attributes to be defined. E.g. when retrieving biometric data, the caller may only
want the meta data about that biometric, rather than the actual biometric data.

Transaction ID

The “transactionID” is a string provided by the client application to identity the request being submitted. It is
optional in most cases. When provided, it can be used for tracing and debugging.

6.1. Enrollment Component 47

OSIA, Release 3.0.0

Data Model

Table 6.1: Enrolment Data Model
Type Description Example
Person Person who is known to an identity assurance system. TBD
Document Data a dictionary (list of names and values) giving the doc-

ument data of interest for the document services.
TBD

Biometric Data Digital representation of biometric characteristics.
All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait or iris.

fingerprint, portrait, iris

Biographic Data a dictionary (list of names and values) giving the bio-
graphic data of interest for the biographic services.

TBD

6.2 Population Registry

The population registry component MAY implement the following interfaces:

6.2.1 Notification

See Notification for the technical details of this interface.

The subscription & notification process is managed by a middleware and is described in the following diagram:

6.2. Population Registry 48

OSIA, Release 3.0.0

Fig. 6.1: Subscription & Notification Process

Services

subscribe(topic, URL)
Subscribe a URL to receive notifications sent to one topic

Parameters

• topic (str) – Topic

• URL (str) – URL to be called when a notification is available

Returns a subscription ID

This service is synchronous.

unsubscribe(id)
Unsubscribe a URL from the list of receiver for one topic

Parameters id (str) – Subscription ID

Returns bool

This service is synchronous.

confirm(token)
Confirm that the URL used during the subscription is valid

Parameters token (str) – A token send through the URL.

Returns bool

This service is synchronous.

6.2. Population Registry 49

OSIA, Release 3.0.0

publish(topic, subject, message)
Notify of a new event all systems that subscribed to this topic

Parameters

• topic (str) – Topic

• subject (str) – The subject of the message

• message (str) – The message itself (a string buffer)

Returns N/A

This service is asynchronous (systems that subscribed on this topic are notified asynchronously).

Dictionaries

As an example, below there is a list of events that each component might handle.

Table 6.2: Event Type
Event Type Emitted by CR Emitted by PR
Live birth XXX
Death XXX
Fœtal Death XXX
Marriage XXX
Divorce XXX
Annulment XXX
Separation, judicial XXX
Adoption XXX
Legitimation XXX
Recognition XXX
Change of name XXX
Change of gender XXX
New person XXX
Duplicate person XXX XXX

6.2.2 Data Access

See Data Access for the technical details of this interface.

Services

readPersonAttributes(UIN, names)
Read person attributes.

Authorization: To be defined

Parameters

• UIN (str) – The person’s UIN

• names (list[str]) – The names of the attributes requested

Returns a list of pair (name,value). In case of error (unknown attributes, unauthorized access,
etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

6.2. Population Registry 50

OSIA, Release 3.0.0

Fig. 6.2: readPersonAttributes Sequence Diagram

matchPersonAttributes(UIN, attributes)
Match person attributes. This service is used to check the value of attributes without exposing private data.
The implementation can use a simple comparison or a more advanced technique (for example: phonetic
comparison for names)

Authorization: To be defined

Parameters

• UIN (str) – The person’s UIN

• attributes (list[(str,str)]) – The attributes to match. Each attribute is
described with its name and the expected value

Returns If all attributes match, a Yes is returned. If one attribute does not match, a No is returned
along with a list of (name,reason) for each non-matching attribute.

This service is synchronous. It can be used to match attributes in CR or in PR.

Fig. 6.3: matchPersonAttributes Sequence Diagram

verifyPersonAttributes(UIN, expressions)
Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s at-
tributes without exposing private data The implementation can use a simple comparison or a more advanced
technique (for example: phonetic comparison for names)

Authorization: To be defined

Parameters

• UIN (str) – The person’s UIN

• expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=)
and the attribute value

6.2. Population Registry 51

OSIA, Release 3.0.0

Returns A Yes if all expressions are true, a No if one expression is false, a Unknown if
To be defined

This service is synchronous. It can be used to verify attributes in CR or in PR.

Fig. 6.4: verifyPersonAttributes Sequence Diagram

queryPersonUIN(attributes)
Query the persons by a set of attributes. This service is used when the UIN is unknown. The implementation
can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: To be defined

Parameters attributes (list[(str,str)]) – The attributes to be used to find UIN.
Each attribute is described with its name and its value

Returns a list of matching UIN

This service is synchronous. It can be used to get the UIN of a person.

Fig. 6.5: queryPersonUIN Sequence Diagram

queryPersonList(attributes, names)
Query the persons by a list of attributes and their values. This service is proposed as an optimization of a
sequence of calls to queryPersonUIN() and readPersonAttributes().

Authorization: To be defined

Parameters

• attributes (list[(str,str)]) – The attributes to be used to find the persons.
Each attribute is described with its name and its value

• names (list[str]) – The names of the attributes requested

Returns a list of lists of pairs (name,value). In case of error (unknown attributes, unauthorized
access, etc.) the value is replaced with an error

6.2. Population Registry 52

OSIA, Release 3.0.0

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

Fig. 6.6: queryPersonList Sequence Diagram

readDocument(UINs, documentType, format)
Read in a selected format (PDF, image, . . .) a document such as a marriage certificate.

Authorization: To be defined

Parameters

• UIN (list[str]) – The list of UINs for the persons concerned by the document

• documentType (str) – The type of document (birth certificate, etc.)

• format (str) – The format of the returned/requested document

Returns The list of the requested documents

This service is synchronous. It can be used to get the documents for a person.

Fig. 6.7: readDocument Sequence Diagram

Dictionaries

As an example, below there is a list of attributes/documents that each component might handle.

6.2. Population Registry 53

OSIA, Release 3.0.0

Table 6.3: Person Attributes
Attribute Name In CR In PR Description
UIN XXX XXX
first name XXX XXX
last name XXX XXX
spouse name XXX XXX
date of birth XXX XXX
place of birth XXX XXX
gender XXX XXX
date of death XXX XXX
place of death XXX
reason of death XXX
status XXX Example: missing, wanted, dead, etc.

Table 6.4: Certificate Attributes
Attribute Name In CR In PR Description
officer name XXX
number XXX
date XXX
place XXX
type XXX

Table 6.5: Union Attributes
Attribute Name In CR In PR Description
date of union XXX
place of union XXX
conjoint1 UIN XXX
conjoint2 UIN XXX
date of divorce XXX

Table 6.6: Filiation Attributes
Attribute Name In CR In PR Description
parent1 UIN XXX
parent2 UIN XXX

Table 6.7: Document Type
Document Type Description
birth certificate To be completed

death certificate To be completed

marriage certificate To be completed

6.2.3 Population Registry Services

This interface describes services to manage a registry of the population in the context of an identity system. It is
based on the following principles:

• It supports a history of identities, meaning that a person has one identity and this identity has a history.

• Images can be passed by value or reference. When passed by value, they are base64-encoded.

• Existing standards are used whenever possible.

6.2. Population Registry 54

OSIA, Release 3.0.0

• This interface is complementary to the data access interface. The data access interface is used to query the
persons and uses the reference identity to return attributes.

• The population registry can store the biometric data or can rely on the ABIS subsystem to do it. The
preferred solution, for a clean separation of data of different nature and by application of GDPR principles,
is to put the biometric data only in the ABIS. Yet many existing systems store biometric data with the
biographic data and this specification gives the flexibility to do it.

See Population Registry Management for the technical details of this interface.

Services

createPerson(personID, personData, transactionID)
Create a new person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person. If the person already exists for the ID an
error is returned.

• personData – The person attributes.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readPerson(personID, transactionID)
Read the attributes of a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error and in case of success the person data.

updatePerson(personID, personData, transactionID)
Update a person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personData (dict) – The person data.

Returns a status indicating success or error.

deletePerson(personID, transactionID)
Delete a person and all its identities.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

6.2. Population Registry 55

OSIA, Release 3.0.0

createIdentity(personID, identityID, identity, transactionID)
Create a new identity in a person. If no identityID is provided, a new one is generated. If identityID
is provided, it is checked for uniqueness and used for the identity if unique. An error is returned if the
provided identityID is not unique.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity.

• identity – The new identity data.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readIdentity(personID, identityID, transactionID)
Read one or all the identities of one person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personID – The ID of the identity. If not provided, all identities are returned.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error, and in case of success a list of identities.

updateIdentity(personID, identityID, identity, transactionID)
Update an identity. An identity can be updated only in the status claimed.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personID – The ID of the identity.

• identity – The identity data.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

partialUpdateIdentity(personID, identityID, identity, transactionID)
Update part of an identity. Not all attributes are mandatory. The payload is defined as per RFC 7396. An
identity can be updated only in the status claimed.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personID – The ID of the identity.

• identity – Part of the identity data.

Returns a status indicating success or error.

6.2. Population Registry 56

https://tools.ietf.org/html/rfc7396.html

OSIA, Release 3.0.0

deleteIdentity(personID, identityID, transactionID)
Delete an identity.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personID – The ID of the identity.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

setIdentityStatus(personID, identityID, status, transactionID)
Set an identity status.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personID – The ID of the identity.

• status (str) – The new status of the identity.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

defineReference(personID, identityID, transactionID)
Define the reference identity of one person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• personID – The ID of the identity being now the reference.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readReference(personID, transactionID)
Read the reference identity of one person.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error and in case of success the reference identity.

readGalleries(transactionID)
Read the ID of all the galleries.

Authorization: To be defined

6.2. Population Registry 57

OSIA, Release 3.0.0

Parameters transactionID (str) – A free text used to track the system activities related
to the same transaction.

Returns a status indicating success or error, and in case of success a list of gallery ID.

readGalleryContent(galleryID, transactionID)
Read the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: To be defined

Parameters

• galleryID (str) – Gallery whose content will be returned.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error. In case of success a list of person/identity IDs.

6.2. Population Registry 58

OSIA, Release 3.0.0

Data Model

Table 6.8: Population Registry Data Model
Type Description Example
Gallery A group of persons related by a common purpose,

designation, or status. A person can belong to mul-
tiple galleries.

VIP, Wanted, etc.

Person Person who is known to an identity assurance system.
A person record has:

• a status, such as active or inactive, defin-
ing the status of the record (the record can be
excluded from queries based on this status),

• a physical status, such as alive or dead,
defining the status of the person,

• a set of identities, keeping track of all identity
data submitted by the person during the life of
the system,

• a reference identity, i.e. a consolidated view
of all the identities defining the current correct
identity of the person. It corresponds usually to
the last valid identity but it can also include data
from previous identities.

N/A

Identity The attributes describing an identity of a person.
An identity has a status such as: claimed (iden-
tity not yet validated), valid (the identity is valid),
invalid (the identity is not valid), revoked (the
identity cannot be used any longer).
An identity can be updated only in the status
claimed.
The allowed transitions for the status are represented
below:

The attributes are separated into two categories: the
biographic data and the contextual data.

N/A

Biographic Data A dictionary (list of names and values) giving the bi-
ographic data of the identity

firstName,
lastName,
dateOfBirth, etc.

Contextual Data A dictionary (list of names and values) attached to the
context of establishing the identity

operatorName,
enrolmentDate, etc.

Biometric Data Digital representation of biometric characteristics.
All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait or iris.

fingerprint, portrait, iris

Document The document data (images) attached to the identity
and used to validate it.

Birth certificate, invoice

6.2. Population Registry 59

OSIA, Release 3.0.0

Fig. 6.8: Population Registry Data Model

6.3 Civil Registry

The civil registry component MAY implement the following interfaces:

6.3.1 Notification

See Notification for the technical details of this interface.

The subscription & notification process is managed by a middleware and is described in the following diagram:

6.3. Civil Registry 60

OSIA, Release 3.0.0

Fig. 6.9: Subscription & Notification Process

Services

subscribe(topic, URL)
Subscribe a URL to receive notifications sent to one topic

Parameters

• topic (str) – Topic

• URL (str) – URL to be called when a notification is available

Returns a subscription ID

This service is synchronous.

unsubscribe(id)
Unsubscribe a URL from the list of receiver for one topic

Parameters id (str) – Subscription ID

Returns bool

This service is synchronous.

confirm(token)
Confirm that the URL used during the subscription is valid

Parameters token (str) – A token send through the URL.

Returns bool

This service is synchronous.

6.3. Civil Registry 61

OSIA, Release 3.0.0

publish(topic, subject, message)
Notify of a new event all systems that subscribed to this topic

Parameters

• topic (str) – Topic

• subject (str) – The subject of the message

• message (str) – The message itself (a string buffer)

Returns N/A

This service is asynchronous (systems that subscribed on this topic are notified asynchronously).

Dictionaries

As an example, below there is a list of events that each component might handle.

Table 6.9: Event Type
Event Type Emitted by CR Emitted by PR
Live birth XXX
Death XXX
Fœtal Death XXX
Marriage XXX
Divorce XXX
Annulment XXX
Separation, judicial XXX
Adoption XXX
Legitimation XXX
Recognition XXX
Change of name XXX
Change of gender XXX
New person XXX
Duplicate person XXX XXX

6.3.2 Data Access

See Data Access for the technical details of this interface.

Services

readPersonAttributes(UIN, names)
Read person attributes.

Authorization: To be defined

Parameters

• UIN (str) – The person’s UIN

• names (list[str]) – The names of the attributes requested

Returns a list of pair (name,value). In case of error (unknown attributes, unauthorized access,
etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

6.3. Civil Registry 62

OSIA, Release 3.0.0

Fig. 6.10: readPersonAttributes Sequence Diagram

matchPersonAttributes(UIN, attributes)
Match person attributes. This service is used to check the value of attributes without exposing private data.
The implementation can use a simple comparison or a more advanced technique (for example: phonetic
comparison for names)

Authorization: To be defined

Parameters

• UIN (str) – The person’s UIN

• attributes (list[(str,str)]) – The attributes to match. Each attribute is
described with its name and the expected value

Returns If all attributes match, a Yes is returned. If one attribute does not match, a No is returned
along with a list of (name,reason) for each non-matching attribute.

This service is synchronous. It can be used to match attributes in CR or in PR.

Fig. 6.11: matchPersonAttributes Sequence Diagram

verifyPersonAttributes(UIN, expressions)
Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s at-
tributes without exposing private data The implementation can use a simple comparison or a more advanced
technique (for example: phonetic comparison for names)

Authorization: To be defined

Parameters

• UIN (str) – The person’s UIN

• expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=)
and the attribute value

6.3. Civil Registry 63

OSIA, Release 3.0.0

Returns A Yes if all expressions are true, a No if one expression is false, a Unknown if
To be defined

This service is synchronous. It can be used to verify attributes in CR or in PR.

Fig. 6.12: verifyPersonAttributes Sequence Diagram

queryPersonUIN(attributes)
Query the persons by a set of attributes. This service is used when the UIN is unknown. The implementation
can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: To be defined

Parameters attributes (list[(str,str)]) – The attributes to be used to find UIN.
Each attribute is described with its name and its value

Returns a list of matching UIN

This service is synchronous. It can be used to get the UIN of a person.

Fig. 6.13: queryPersonUIN Sequence Diagram

queryPersonList(attributes, names)
Query the persons by a list of attributes and their values. This service is proposed as an optimization of a
sequence of calls to queryPersonUIN() and readPersonAttributes().

Authorization: To be defined

Parameters

• attributes (list[(str,str)]) – The attributes to be used to find the persons.
Each attribute is described with its name and its value

• names (list[str]) – The names of the attributes requested

Returns a list of lists of pairs (name,value). In case of error (unknown attributes, unauthorized
access, etc.) the value is replaced with an error

6.3. Civil Registry 64

OSIA, Release 3.0.0

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

Fig. 6.14: queryPersonList Sequence Diagram

readDocument(UINs, documentType, format)
Read in a selected format (PDF, image, . . .) a document such as a marriage certificate.

Authorization: To be defined

Parameters

• UIN (list[str]) – The list of UINs for the persons concerned by the document

• documentType (str) – The type of document (birth certificate, etc.)

• format (str) – The format of the returned/requested document

Returns The list of the requested documents

This service is synchronous. It can be used to get the documents for a person.

Fig. 6.15: readDocument Sequence Diagram

Dictionaries

As an example, below there is a list of attributes/documents that each component might handle.

6.3. Civil Registry 65

OSIA, Release 3.0.0

Table 6.10: Person Attributes
Attribute Name In CR In PR Description
UIN XXX XXX
first name XXX XXX
last name XXX XXX
spouse name XXX XXX
date of birth XXX XXX
place of birth XXX XXX
gender XXX XXX
date of death XXX XXX
place of death XXX
reason of death XXX
status XXX Example: missing, wanted, dead, etc.

Table 6.11: Certificate Attributes
Attribute Name In CR In PR Description
officer name XXX
number XXX
date XXX
place XXX
type XXX

Table 6.12: Union Attributes
Attribute Name In CR In PR Description
date of union XXX
place of union XXX
conjoint1 UIN XXX
conjoint2 UIN XXX
date of divorce XXX

Table 6.13: Filiation Attributes
Attribute Name In CR In PR Description
parent1 UIN XXX
parent2 UIN XXX

Table 6.14: Document Type
Document Type Description
birth certificate To be completed

death certificate To be completed

marriage certificate To be completed

6.4 UIN Generator

The UIN generator component MAY implement the following interfaces:

6.4.1 UIN Management

See UIN Management for the technical details of this interface.

6.4. UIN Generator 66

OSIA, Release 3.0.0

Services

generateUIN(attributes)
Generate a new UIN.

Authorization: To be defined

Parameters attributes (list[(str,str)]) – A list of pair (attribute name, value) that
can be used to allocate a new UIN

Returns a new UIN or an error if the generation is not possible

This service is synchronous.

Fig. 6.16: generateUIN Sequence Diagram

6.5 ABIS

The ABIS component MAY implement the following interfaces:

6.5.1 Biometrics

This interface describes biometric services in the context of an identity system. It is based on the following
principles:

• It supports only multi-encounter model, meaning that an identity can have multiple set of biometric data,
one for each encounter.

• It does not expose templates (only images) for CRUD services, with one exception to support the use case
of credentials with biometrics.

• Images can be passed by value or reference. When passed by value, they are base64-encoded.

• Existing standards are used whenever possible, for instance preferred image format for biometric data is
ISO-19794.

About synchronous and asynchronous processing

Some services can be very slow depending on the algorithm used, the system workload, etc. Services are described
so that:

• If possible, the answer is provided synchronously in the response of the service.

• If not possible for some reason, a status PENDING is returned and the answer, when available, is pushed to
a callback provided by the client.

If no callback is provided, this indicates that the client wants a synchronous answer, whatever the time it takes.

If a callback is provided, the server will decide if the processing is done synchronously or asynchronously.

6.5. ABIS 67

OSIA, Release 3.0.0

See Biometrics for the technical details of this interface.

Services

create(personID, encounterID, galleryID, biographicData, contextualData, biometricData, clientData,
callback, transactionID, options)

Create a new encounter. No identify is performed. This service is synchronous.

Authorization: To be defined

Parameters

• personID (str) – The person ID. This is optional and will be generated if not pro-
vided

• encounterID (str) – The encounter ID. This is optional and will be generated if
not provided

• galleryID (list(str)) – the gallery ID to which this encounter belongs. A min-
imum of one gallery must be provided

• biographicData (dict) – The biographic data (ex: name, date of birth, gender,
etc.)

• contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

• biometricData (list) – the biometric data (images)

• clientData (bytes) – additional data not interpreted by the server but stored as is
and returned when encounter data is requested.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
algorithm.

Returns a status indicating success, error, or pending operation. In case of success, the person
ID and the encounter ID are returned. In case of pending operation, the result will be sent
later.

read(personID, encounterID, callback, transactionID, options)
Read the data of an encounter.

Authorization: To be defined

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the person are returned.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of success, the en-
counter data is returned. In case of pending operation, the result will be sent later.

update(personID, encounterID, galleryID, biographicData, contextualData, biometricData, callback,
transactionID, options)

Update an encounter.

Authorization: To be defined

6.5. ABIS 68

OSIA, Release 3.0.0

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID

• galleryID (list(str)) – the gallery ID to which this encounter belongs. A min-
imum of one gallery must be provided

• biographicData (dict) – The biographic data (ex: name, date of birth, gender,
etc.)

• contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

• biometricData (list) – the biometric data (images)

• clientData (bytes) – additional data not interpreted by the server but stored as is
and returned when encounter data is requested.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
algorithm.

Returns a status indicating success, error, or pending operation. In case of success, the person
ID and the encounter ID are returned. In case of pending operation, the result will be sent
later.

delete(personID, encounterID, callback, transactionID, options)
Delete an encounter.

Authorization: To be defined

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the person are deleted.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of pending operation,
the operation status will be sent later.

readTemplate(personID, encounterID, biometricType, biometricSubType, callback, transactionID, op-
tions)

Read the generated template.

Authorization: To be defined

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID.

• biometricType (str) – The type of biometrics to consider (optional)

• biometricSubType (str) – The subtype of biometrics to consider (optional)

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

6.5. ABIS 69

OSIA, Release 3.0.0

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of success, a list of
template data is returned. In case of pending operation, the result will be sent later.

readGalleries(callback, transactionID, options)
Read the ID of all the galleries.

Authorization: To be defined

Parameters

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. A list of gallery ID is returned,
either synchronously or using the callback.

readGalleryContent(galleryID, callback, transactionID, options)
Read the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: To be defined

Parameters

• galleryID (str) – Gallery whose content will be returned.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. A list of persons/encounters is
returned, either synchronously or using the callback.

identify(galleryID, filter, biometricData, callback, transactionID, options)
Identify a person using biometrics data and filters on biographic or contextual data. This may include
multiple operations, including manual operations.

Authorization: To be defined

Parameters

• galleryID (str) – Search only in this gallery.

• filter (dict) – The input data (filters and biometric data)

• biometricData – the biometric data.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A list of candidates is returned,
either synchronously or using the callback.

6.5. ABIS 70

OSIA, Release 3.0.0

identify(galleryID, filter, personID, callback, transactionID, options)
Identify a person using biometrics data of a person existing in the system and filters on biographic or
contextual data. This may include multiple operations, including manual operations.

Authorization: To be defined

Parameters

• galleryID (str) – Search only in this gallery.

• filter (dict) – The input data (filters and biometric data)

• personID – the person ID

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A list of candidates is returned,
either synchronously or using the callback.

verify(galleryID, personID, biometricData, callback, transactionID, options)
Verify an identity using biometrics data.

Authorization: To be defined

Parameters

• galleryID (str) – Search only in this gallery. If the person does not belong to this
gallery, an error is returned.

• personID (str) – The person ID

• biometricData – The biometric data

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A status (boolean) is returned,
either synchronously or using the callback. Optionally, details about the matching result can
be provided like the score per biometric and per encounter.

verify(biometricData1, biometricData2, callback, transactionID, options)
Verify that two sets of biometrics data correspond to the same person.

Authorization: To be defined

Parameters

• biometricData1 – The first set of biometric data

• biometricData2 – The second set of biometric data

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
threshold, accuracyLevel.

6.5. ABIS 71

OSIA, Release 3.0.0

Returns a status indicating success, error, or pending operation. A status (boolean) is returned,
either synchronously or using the callback. Optionally, details about the matching result can
be provided like the score per the biometric.

Options

Table 6.15: Biometric Services Options
Name Description
priority Priority of the request. Values range from 0 to 9
maxNbCand The maximum number of candidates to return.
threshold The threshold to apply on the score to filter the candidates during an identification,

authentication or verification.
algorithm Specify the type of algorithm to be used.
accuracyLevel Specify the accuracy expected of the request. This is to support different use cases,

when different behavior of the ABIS is expected (response time, accuracy, consol-
idation/fusion, etc.).

Data Model

Table 6.16: Biometric Data Model
Type Description Example
Gallery A group of persons related by a common purpose,

designation, or status. A person can belong to mul-
tiple galleries.

TBD

Person Person who is known to an identity assurance system. TBD
Encounter Event in which the client application interacts with

a person resulting in data being collected during or
about the encounter. An encounter is characterized by
an identifier and a type (also called purpose in some
context).

TBD

Biographic Data a dictionary (list of names and values) giving the bio-
graphic data of interest for the biometric services.

TBD

Filters a dictionary (list of names and values or range of val-
ues) describing the filters during a search. Filters can
apply on biographic data, contextual data or encounter
type.

TBD

Biometric Data Digital representation of biometric characteristics.
All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait or iris.

fingerprint, portrait, iris

Candidate Information about a candidate found during an identi-
fication

TBD

CandidateScore Detailed information about a candidate found during
an identification. It includes the score for the biomet-
rics used.

TBD

Template A computed buffer corresponding to a biometric and
allowing the comparison of biometrics. A template
has a format that can be a standard format or a vendor-
specific format.

N/A

6.5. ABIS 72

OSIA, Release 3.0.0

Fig. 6.17: Biometric Data Model

6.6 Credential Management System

The credential management system component MAY implement the following interfaces:

6.6.1 Credential Services

Services

createCredential(personID, credentialProfileID, additionalData, transactionID)
Request issuance of a secure document / credential.

Authorization: To be defined

Parameters

• personID (str) – The ID of the person.

• credentialProfileID (str) – The ID of the credential profile to issue to the
person.

• additionalData (dict) – Additional data relating to the requested credential pro-
file, e.g. credential lifetime if overriding default, delivery addresses, etc.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error. In the case of success, an issuance identifier.

readCredentialIssuance(issuanceID, filter, transactionID)
Retrieve the data/status of an issuance.

Authorization: To be defined

Parameters

6.6. Credential Management System 73

OSIA, Release 3.0.0

• issuanceID (str) – The ID of the issuance.

• filter (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error, and in case of success the issuance data/status.

updateCredential(issuanceID, additionalData, transactionID)
Update the requested issuance of a secure document / credential.

Authorization: To be defined

Parameters

• issuanceID (str) – The ID of the issuance.

• transactionID (string) – The client generated transactionID.

• additionalData (dict) – Additional data relating to the requested credential pro-
file, e.g. credential lifetime if overriding default, delivery addresses, etc.

Returns a status indicating success or error.

deleteCredential(issuanceID, transactionID)
Delete/cancel the requested issuance of a secure document / credential.

Authorization: To be defined

Parameters

• issuanceID (str) – The ID of the issuance.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

readCredential(credentialID, filter, transactionID)
Retrieve the attributes/status of an issued credential. A wide range of information may be returned, depen-
dant on the type of credential that was issued, smart card, mobile, passport, etc.

Authorization: To be defined

Parameters

• credentialID (str) – The ID of the credential.

• filter (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error, in the case of success the requested data will be
returned.

suspendCredential(credentialID, transactionID)
Suspend an issued credential. For electronic credentials this will suspend any PKI certificates that are
present.

Authorization: To be defined

Parameters

• credentialID (str) – The ID of the credential.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

6.6. Credential Management System 74

OSIA, Release 3.0.0

unsuspendCredential(credentialID, transactionID)
Unsuspend an issued credential. For electronic credentials this will unsuspend any PKI certificates that are
present.

Authorization: To be defined

Parameters

• credentialID (str) – The ID of the credential.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

cancelCredential(credentialID, transactionID)
Cancel an issued credential. For electronic credentials this will revoke any PKI certificates that are present.

Authorization: To be defined

Parameters

• credentialID (str) – The ID of the credential.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

6.7 Third Party Services

The third party component MAY implement the following interfaces:

6.7.1 ID Usage

Services

verifyIdentity(UIN[, IDAttribute])
Verify Identity based on UIN and set of Identity Attributes (biometric data, credential, etc.)

Authorization: To be defined

Parameters

• UIN (str) – The person’s UIN

• IDAttribute (list[str]) – A list of list of pair (name,value) requested

Returns Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

identify([inIDAttribute][, outIDAttribute])
Identify a person based on a set of Identity Attributes (biometric data, credential, etc.)

Authorization: To be defined

Parameters

• inIDAttribute (list[str]) – A list of list of pair (name,value) requested

• outIDAttribute (list[str]) – A list of list of attribute names requested

Returns Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

6.7. Third Party Services 75

OSIA, Release 3.0.0

readAttributes(UIN, names)
Read person attributes.

Authorization: To be defined

Parameters

• UIN (str) – The person’s UIN

• names (list[str]) – The names of the attributes requested

Returns a list of pair (name,value). In case of error (unknown attributes, unauthorized access,
etc.) the value is replaced with an error

readAttributeSet(UIN, setName)
Read person attributes corresponding to a predefined set name.

Authorization: To be defined

Parameters

• UIN (str) – The person’s UIN

• setName (str) – The name of predefined attributes set name

Returns a list of pair (name,value). In case of error (unknown attributes, unauthorized access,
etc.) the value is replaced with an error

6.7. Third Party Services 76

CHAPTER 7

Annexes

7.1 Glossary

ABIS Automated Biometric Identification System

CR Civil Registry. The system in charge of the continuous, permanent, compulsory and universal recording of
the occurrence and characteristics of vital events pertaining to the population, as provided through decree
or regulation in accordance with the legal requirements in each country.

CMS Credential Management System

Credential A document, object, or data structure that vouches for the identity of a person through some method of
trust and authentication. Common types of identity credentials include - but are not limited to — ID cards,
certificates, numbers, passwords, or SIM cards. A biometric identifier can also be used as a credential once
it has been registered with the identity provider.

(Source: ID4D Practioner’s Guide)

Encounter Event in which the client application interacts with a person resulting in data being collected during
or about the encounter. An encounter is characterized by an identifier and a type (also called purpose in
some context).

(Source: ISO-30108-1)

Functional systems and registries Managing data including voter rolls, land registry, vehicle registration, pass-
port, residence registry, education, health and benefits.

HTTP Status Codes The HTTP Status Codes are used to indicate the status of the executed operation. The
available status codes are described by RFC 7231 and in the IANA Status Code Registry.

Mime Types Mime type definitions are spread across several resources. The mime type definitions should be in
compliance with RFC 6838.

Some examples of possible mime type definitions:

text/plain; charset=utf-8
application/json
application/vnd.github+json
application/vnd.github.v3+json
application/vnd.github.v3.raw+json
application/vnd.github.v3.text+json
application/vnd.github.v3.html+json

(continues on next page)

77

http://documents.worldbank.org/curated/en/248371559325561562/pdf/ID4D-Practitioner-s-Guide.pdf
http://tools.ietf.org/html/rfc7231#section-6
http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
http://tools.ietf.org/html/rfc6838

OSIA, Release 3.0.0

(continued from previous page)

application/vnd.github.v3.full+json
application/vnd.github.v3.diff
application/vnd.github.v3.patch

OSIA Open Standard Identity APIs

PR Population Registry. The system in charge of the recording of selected information pertaining to each member
of the resident population of a country.

UIN Unique Identity Number.

7.2 Data Format

TBD: Conventions about data format in the interface: json, standards for date, images; structure of biographic data

7.3 Technical Specifications

7.3.1 Notification

Download the OpenAPI file for this interface notification.yaml.

Services

Publisher

POST /v1/topics
Create a topic

Create a new topic. This service is idempotent.

Query Parameters

• name (string) – The topic name (Required)

Status Codes

• 200 OK – Topic was created.

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"uuid": "string",
"name": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

7.2. Data Format 78

https://github.com/SecureIdentityAlliance/osia/tree/master/src/doc/yaml/notification.yaml
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

GET /v1/topics
Get all topics

Status Codes

• 200 OK – Get all topics

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/topics HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"uuid": "string",
"name": "string"

}
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

DELETE /v1/topics/{uuid}
Delete a topic

Delete a topic

Parameters

• uuid (string) – the unique ID returned when the topic was created

Status Codes

• 204 No Content – Topic successfully removed

• 404 Not Found – Topic not found

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/topics/{uuid}/publish
Post a notification to a topic.

Parameters

• uuid (string) – the unique ID of the topic

Query Parameters

7.3. Technical Specifications 79

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

• subject (string) – the subject of the message.

Status Codes

• 200 OK – Notification published

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Subscriber

POST /v1/subscriptions
Subscribe to a topic

Subscribes a client to receive event notification.

Subscriptions are idempotent. Subscribing twice for the same topic and endpoint (protocol, address) will
return the same subscription ID and the subscriber will receive only once the notifications.

Query Parameters

• topic (string) – The name of the topic for which notifications will be sent (Re-
quired)

• protocol (string) – The protocol used to send the notification

• address (string) – the endpoint address, where the notifications will be sent. (Re-
quired)

• policy (string) – The delivery policy, expressing what happens when the message
cannot be delivered.

If not specified, retry will be done every hour for 7 days.

The value is a set of integer separated by comma:

– countdown: the number of seconds to wait before retrying. Default: 3600.

– max: the maximum max number of retry. -1 indicates infinite retry. Default: 168

Status Codes

• 200 OK – Subscription successfully created. Waiting for confirmation message.

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"uuid": "string",
"topic": "string",
"protocol": "http",
"address": "string",
"policy": "string",
"active": true

}

Example response:

7.3. Technical Specifications 80

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: onEvent

POST {$request.query.address}

Status Codes

• 200 OK – Message received and processed.

• 500 Internal Server Error – Unexpected error

Request Headers

• message-type – the type of the message (Required)

• subscription-id – the unique ID of the subscription

• message-id – the unique ID of the message (Required)

• topic-id – the unique ID of the topic (Required)

Example request:

POST {$request.query.address} HTTP/1.1
Host: example.com
Content-Type: application/json

{
"type": "SubscriptionConfirmation",
"token": "string",
"topic": "string",
"message": "string",
"messageId": "string",
"subject": "string",
"subscribeURL": "https://example.com",
"timestamp": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/subscriptions
Get all subscriptions

Status Codes

• 200 OK – Get all subscriptions

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/subscriptions HTTP/1.1
Host: example.com

7.3. Technical Specifications 81

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"uuid": "string",
"topic": "string",
"protocol": "http",
"address": "string",
"policy": "string",
"active": true

}
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

DELETE /v1/subscriptions/{uuid}
Unsubscribe from a topic

Unsubscribes a client from receiving notifications for a topic

Parameters

• uuid (string) – the unique ID returned when the subscription was done

Status Codes

• 204 No Content – Subscription successfully removed

• 404 Not Found – Subscription not found

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/subscriptions/confirm
Confirm the subscription

Confirm a subscription

Query Parameters

• token (string) – the token sent to the endpoint (Required)

Status Codes

• 200 OK – Subscription successfully confirmed

• 400 Bad Request – Invalid token

• 500 Internal Server Error – Unexpected error

Example request:

7.3. Technical Specifications 82

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

GET /v1/subscriptions/confirm?token=string HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Notification Message

This section describes the messages exchanged through notification. All messages are encoded in json. They are
generated by the emitter (the source of the event) and received by zero, one, or many receivers that have subscribed
to the type of event.

Table 7.1: Event Type & Message
Event Type Message
liveBirth

• source: identification of the system emitting the event
• uin of the new born
• uin1 of the first parent (optional if parent is unknown)
• uin2 of the second parent (optional if parent is unknown)

Example:

{
"source": "systemX",
"uin": "123456789",
"uin1": "123456789",
"uin2": "234567890"

}

death
• source: identification of the system emitting the event
• uin of the dead person

Example:

{
"source": "systemX",
"uin": "123456789"

}

birthCancellation
• source: identification of the system emitting the event
• uin of the person whose birth declaration is being cancelled

Example:

{
"source": "systemX",
"uin": "123456789",

}

Continued on next page

7.3. Technical Specifications 83

OSIA, Release 3.0.0

Table 7.1 – continued from previous page
Event Type Message
foetalDeath

• source: identification of the system emitting the event
• uin of the new born

Example:

{
"source": "systemX",
"uin": "123456789"

}

marriage
• source: identification of the system emitting the event
• uin1 of the first conjoint
• uin2 of the second conjoint

Example:

{
"source": "systemX",
"uin1": "123456789",
"uin2": "234567890"

}

divorce
• source: identification of the system emitting the event
• uin1 of the first conjoint
• uin2 of the second conjoint

Example:

{
"source": "systemX",
"uin1": "123456789",
"uin2": "234567890"

}

annulment
• source: identification of the system emitting the event
• uin1 of the first conjoint
• uin2 of the second conjoint

Example:

{
"source": "systemX",
"uin1": "123456789",
"uin2": "234567890"

}

separation
• source: identification of the system emitting the event
• uin1 of the first conjoint
• uin2 of the second conjoint

Example:

{
"source": "systemX",
"uin1": "123456789",
"uin2": "234567890"

}

Continued on next page

7.3. Technical Specifications 84

OSIA, Release 3.0.0

Table 7.1 – continued from previous page
Event Type Message
adoption

• source: identification of the system emitting the event
• uin of the child
• uin1 of the first parent
• uin2 of the second parent (optional)

Example:

{
"source": "systemX",
"uin": "123456789",
"uin1": "234567890"

}

legitimation
• source: identification of the system emitting the event
• uin of the child
• uin1 of the first parent
• uin2 of the second parent (optional)

Example:

{
"source": "systemX",
"uin": "987654321",
"uin1": "123456789",
"uin2": "234567890"

}

recognition
• source: identification of the system emitting the event
• uin of the child
• uin1 of the first parent
• uin2 of the second parent (optional)

Example:

{
"source": "systemX",
"uin": "123456789",
"uin2": "234567890"

}

changeOfName
• source: identification of the system emitting the event
• uin of the person

Example:

{
"source": "systemX",
"uin": "123456789"

}

changeOfGender
• source: identification of the system emitting the event
• uin of the person

Example:

{
"source": "systemX",
"uin": "123456789"

}

Continued on next page

7.3. Technical Specifications 85

OSIA, Release 3.0.0

Table 7.1 – continued from previous page
Event Type Message
updatePerson

• source: identification of the system emitting the event
• uin of the person

Example:

{
"source": "systemX",
"uin": "123456789"

}

newPerson
• source: identification of the system emitting the event
• uin of the person

Example:

{
"source": "systemX",
"uin": "123456789"

}

duplicatePerson
• source: identification of the system emitting the event
• uin of the person to be kept
• duplicates: list of uin for records identified as duplicates

Example:

{
"source": "systemX",
"uin": "123456789",
"duplicates": [

"234567890",
"345678901"

]
}

Note: Anonymized notification of events will be treated separately.

7.3.2 UIN Management

Download the OpenAPI file for this interface uin.yaml.

Services

POST /v1/uin
Request the generation of a new UIN.

The request body should contain a list of attributes and their value, formatted as a json dictionary.

Status Codes

• 200 OK – UIN is generated

• 401 Unauthorized – Client must be authenticated

• 403 Forbidden – Service forbidden

• 500 Internal Server Error – Unexpected error (See Error)

Example request:

7.3. Technical Specifications 86

https://github.com/SecureIdentityAlliance/osia/tree/master/src/doc/yaml/uin.yaml
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

POST http://server.com/v1/uin HTTP/1.1
Host: server.com
Content-Type: application/json

{
"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1984-11-19"

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

1235567890

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

7.3.3 Data Access

Download the OpenAPI file for this interface dataaccess.yaml.

Services

Person

GET /v1/persons
Query for persons using a set of attributes. Retrieve the UIN or the person attributes. This service is
used when the UIN is unknown. Example: http://registry.com/v1/persons?firstName=John&lastName=
Do&names=firstName

Query Parameters

• attributes (object) – The attributes (names and values) used to query (Required)

• names (array) – The names of the attributes to return. If not provided, only the UIN
is returned

• max (number) – The maximum number of records to return. Default is 10

Status Codes

• 200 OK – The requested attributes for all found persons (a list of at least one entry). If
no names are given, a flat list of UIN is returned. If at least one name is given, a list of
dictionaries (one dictionary per record) is returned.

• 400 Bad Request – Invalid parameter

• 401 Unauthorized – Client must be authenticated

• 403 Forbidden – Service forbidden

• 404 Not Found – No record found

• 500 Internal Server Error – Unexpected error

Example request:

7.3. Technical Specifications 87

https://github.com/SecureIdentityAlliance/osia/tree/master/src/doc/yaml/dataaccess.yaml
http://registry.com/v1/persons?firstName=John&lastName=Do&names=firstName
http://registry.com/v1/persons?firstName=John&lastName=Do&names=firstName
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

GET /v1/persons?firstName=John&lastName=Do HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
"string"

]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/persons/{uin}
Read attributes for a person. Example: http://registry.com/v1/persons/123456789?attributeNames=
firstName&attributeNames=lastName&attributeNames=dob

Parameters

• uin (string) – Unique Identity Number

Query Parameters

• attributeNames (array) – The names of the attributes requested for this person
(Required)

Status Codes

• 200 OK – Requested attributes values or error description.

• 401 Unauthorized – Client must be authenticated

• 403 Forbidden – Service forbidden

• 404 Not Found – Unknown uin

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{uin}?attributeNames=%5B%27string%27%5D HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"firstName": "John",
"lastName": "Doo",
"dob": {

"code": 1023,
"message": "Unknown attribute name"

}
}

Example response:

7.3. Technical Specifications 88

http://registry.com/v1/persons/123456789?attributeNames=firstName&attributeNames=lastName&attributeNames=dob
http://registry.com/v1/persons/123456789?attributeNames=firstName&attributeNames=lastName&attributeNames=dob
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/persons/{uin}/match
Match person attributes. This service is used to check the value of attributes without exposing private data.

The request body should contain a list of attributes and their value, formatted as a json dictionary.

Parameters

• uin (string) – Unique Identity Number

Status Codes

• 200 OK – Information about non matching attributes. Returns a list of matching result.
An empty list indicates all attributes were matching.

• 401 Unauthorized – Client must be authenticated

• 403 Forbidden – Service forbidden

• 404 Not Found – Unknown uin

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons/{uin}/match HTTP/1.1
Host: example.com
Content-Type: application/json

{
"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1984-11-19"

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"attributeName": "firstName",
"errorCode": 1

}
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/persons/{uin}/verify
Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s
attributes without exposing private data

The request body should contain a list of expressions.

Parameters

7.3. Technical Specifications 89

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

• uin (string) – Unique Identity Number

Status Codes

• 200 OK – The expressions are all true (true is returned) or one is false (false is returned)

• 401 Unauthorized – Client must be authenticated

• 403 Forbidden – Forbidden access. The service is forbidden or one of the attributes is
forbidden.

• 404 Not Found – Unknown uin

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons/{uin}/verify HTTP/1.1
Host: example.com
Content-Type: application/json

[
{

"attributeName": "firstName",
"operator": "=",
"value": "John"

},
{

"attributeName": "dateOfBirth",
"operator": "<",
"value": "1990-12-31"

}
]

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

true

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Document

GET /v1/persons/{uin}/document
Read in an unstructured format (PDF, image) a document such as a marriage certifi-
cate. Example: http://registry.com/v1/persons/123456789/document?
doctype=marriage&secondaryUin=234567890&format=pdf

Parameters

• uin (string) – Unique Identity Number

Query Parameters

• secondaryUin (string) – Unique Identity Number of a second person linked to
the requested document. Example: wife, husband

• doctype (string) – The type of document (Required)

7.3. Technical Specifications 90

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

• format (string) – The expected format of the document. If the document is not
available at this format, it must be converted. TBD: one format for certificate data.
(Required)

Status Codes

• 200 OK – The document(s) is/are found and returned, as binary data in a MIME multi-
part structure.

• 401 Unauthorized – Client must be authenticated

• 403 Forbidden – Service forbidden

• 404 Not Found – Unknown uin

• 415 Unsupported Media Type – Unsupported format

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{uin}/document?doctype=string&format=pdf HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Data Model

Person Attributes

When exchanged in the services described in this document, the persons attributes will apply the following rules:

Table 7.2: Person Attributes
Attribute Name Description Format
uin Unique Identity Number Text
firstName First name Text
lastName Last name Text
spouseName Spouse name Text
dateOfBirth Date of birth Date (iso8601). Example: 1987-11-17
placeOfBirth Place of birth Text
gender Gender Number (iso5218). One of 0 (Not known), 1 (Male),

2 (Female), 9 (Not applicable)
dateOfDeath Date of death Date (iso8601). Example: 2018-11-17
placeOfDeath Place of death Text
reasonOfDeath Reason of death Text
status Status. Example: missing,

wanted, dead, etc.
Text

Matching Error

A list of:

7.3. Technical Specifications 91

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

Table 7.3: Matching Error Object
Attribute Type Description Mandatory
attributeName String Attribute name (See Person Attributes) Yes
errorCode 32 bits integer Error code. Possible values: 0 (attribute

does not exist); 1 (attribute exists but
does not match)

Yes

Expression

Table 7.4: Expression Object
Attribute Type Description Mandatory
attributeName String Attribute name (See Person Attributes) Yes
operator String Operator to apply. Possible values: <, >,

=, >=, <=
Yes

value string, or integer, or
boolean

The value to be evaluated Yes

Error

Table 7.5: Error Object
Attribute Type Description Mandatory
code 32 bits integer Error code Yes
message String Error message Yes

7.3.4 Population Registry Management

Download the OpenAPI file for this interface pr.yaml.

Services

Person

POST /v1/persons/{personId}
Create one person

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 201 Created – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 500 Internal Server Error – Unexpected error

Example request:

7.3. Technical Specifications 92

https://github.com/SecureIdentityAlliance/osia/tree/master/src/doc/yaml/pr.yaml
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

POST /v1/persons/{personId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"personId": {},
"status": "ACTIVE",
"physicalStatus": "DEAD"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/persons/{personId}
Read one person

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Read successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{personId}?transactionId=string HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"personId": {},
"status": "ACTIVE",
"physicalStatus": "DEAD"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

PUT /v1/persons/{personId}
Update one person

7.3. Technical Specifications 93

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Update successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

PUT /v1/persons/{personId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"personId": {},
"status": "ACTIVE",
"physicalStatus": "DEAD"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

DELETE /v1/persons/{personId}
Delete a person and all its identities

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Delete successful

• 400 Bad Request – Bad request

• 403 Forbidden – Delete not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

7.3. Technical Specifications 94

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

Identity

GET /v1/persons/{personId}/identities
Read all the identities of a person

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{personId}/identities?transactionId=string HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"identityId": "string",
"status": "CLAIMED",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"enrolmentDate": "2019-01-11"
},
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
],
"documents": [

{
"documentId": "string",
"documentType": "ID_CARD",

(continues on next page)

7.3. Technical Specifications 95

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

"instance": 1,
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"format": "NONE",
"captureDate": "2020-04-28",
"captureDevice": "string"

}
]

}
]

}
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/persons/{personId}/identities
Create one identity and generate its id

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Insertion successful

• 400 Bad Request – Bad request

• 403 Forbidden – Insertion not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons/{personId}/identities?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"identityId": "string",
"status": "CLAIMED",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"enrolmentDate": "2019-01-11"
},
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",

(continues on next page)

7.3. Technical Specifications 96

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
],
"documents": [

{
"documentId": "string",
"documentType": "ID_CARD",
"instance": 1,
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"format": "NONE",
"captureDate": "2020-04-28",
"captureDevice": "string"

}
]

}
]

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"identityId": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/persons/{personId}/identities/{identityId}
Create one identity

Create one new identity for a person. The provided identityId is checked for validity and used for the new
identity.

Parameters

• personId (string) – the id of the person

7.3. Technical Specifications 97

OSIA, Release 3.0.0

• identityId (string) – the id of the identity

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 201 Created – Insertion successful

• 400 Bad Request – Bad request

• 403 Forbidden – Insertion not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons/{personId}/identities/{identityId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"identityId": "string",
"status": "CLAIMED",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"enrolmentDate": "2019-01-11"
},
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
],
"documents": [

{
"documentId": "string",
"documentType": "ID_CARD",
"instance": 1,
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"format": "NONE",
"captureDate": "2020-04-28",
"captureDevice": "string"

}
]

(continues on next page)

7.3. Technical Specifications 98

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

}
]

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/persons/{personId}/identities/{identityId}
Read one identity

Parameters

• personId (string) – the id of the person

• identityId (string) – the id of the identity

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Read successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{personId}/identities/{identityId}?transactionId=string HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"identityId": "string",
"status": "CLAIMED",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"enrolmentDate": "2019-01-11"
},
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",

(continues on next page)

7.3. Technical Specifications 99

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
],
"documents": [

{
"documentId": "string",
"documentType": "ID_CARD",
"instance": 1,
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"format": "NONE",
"captureDate": "2020-04-28",
"captureDevice": "string"

}
]

}
]

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

PUT /v1/persons/{personId}/identities/{identityId}
Update one identity

Parameters

• personId (string) – the id of the person

• identityId (string) – the id of the identity

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Update successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

7.3. Technical Specifications 100

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

PUT /v1/persons/{personId}/identities/{identityId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"identityId": "string",
"status": "CLAIMED",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"enrolmentDate": "2019-01-11"
},
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
],
"documents": [

{
"documentId": "string",
"documentType": "ID_CARD",
"instance": 1,
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"format": "NONE",
"captureDate": "2020-04-28",
"captureDevice": "string"

}
]

}
]

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

PATCH /v1/persons/{personId}/identities/{identityId}
Update partially one identity

7.3. Technical Specifications 101

OSIA, Release 3.0.0

Update partially an identity. Payload content is a partial identity object compliant with RFC7396.

Parameters

• personId (string) – the id of the person

• identityId (string) – the id of the identity

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Update successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

PATCH /v1/persons/{personId}/identities/{identityId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"galleries": [

"G1",
"G2"

],
"biographicData": {

"gender": null,
"nationality": "FRA"

}
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

DELETE /v1/persons/{personId}/identities/{identityId}
Delete one identity

Parameters

• personId (string) – the id of the person

• identityId (string) – the id of the identity

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Delete successful

• 400 Bad Request – Bad request

• 403 Forbidden – Delete not allowed

• 404 Not Found – Unknown record

7.3. Technical Specifications 102

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

OSIA, Release 3.0.0

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

PUT /v1/persons/{personId}/identities/{identityId}/status
Change the status of an identity

Parameters

• personId (string) – the id of the person

• identityId (string) – the id of the identity

Query Parameters

• status (string) – The status of the identity (Required)

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Reference

PUT /v1/persons/{personId}/identities/{identityId}/reference
Define the reference

Parameters

• personId (string) – the id of the person

• identityId (string) – the id of the identity

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 500 Internal Server Error – Unexpected error

7.3. Technical Specifications 103

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/persons/{personId}/reference
Read the reference

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Read successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{personId}/reference?transactionId=string HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"identityId": "string",
"status": "CLAIMED",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"enrolmentDate": "2019-01-11"
},
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,

(continues on next page)

7.3. Technical Specifications 104

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

"compression": "NONE"
}

],
"documents": [

{
"documentId": "string",
"documentType": "ID_CARD",
"instance": 1,
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"format": "NONE",
"captureDate": "2020-04-28",
"captureDevice": "string"

}
]

}
]

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Gallery

GET /v1/galleries
Read the ID of all the galleries

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/galleries?transactionId=string HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
"string"

]

7.3. Technical Specifications 105

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/galleries/{galleryId}
Read the content of one gallery

Parameters

• galleryId (string) – the id of the gallery

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/galleries/{galleryId}?transactionId=string HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"personId": "string",
"identityId": "string"

}
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Data Model

To be completed

7.3.5 Biometrics

Download the OpenAPI file for this interface abis.yaml.

7.3. Technical Specifications 106

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://github.com/SecureIdentityAlliance/osia/tree/master/src/doc/yaml/abis.yaml

OSIA, Release 3.0.0

Services

CRUD

POST /v1/persons
Create one encounter and generate ID for both the person and the encounter

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

• algorithm (string) – Hint about the algorithm to be used

Status Codes

• 200 OK – Operation successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned.

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"encounterId": "string",
"encounterType": "string",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
]

}

Example response:

7.3. Technical Specifications 107

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

HTTP/1.1 200 OK
Content-Type: application/json

{
"personId": "string",
"encounterId": "string"

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: createResponse

POST ${request.query.callback}
Create one encounter and generate both IDs response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"personId": "string",
"encounterId": "string"

}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

(continues on next page)

7.3. Technical Specifications 108

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

{
"code": 1,
"message": "string"

}

POST /v1/persons/{personId}/encounters/{encounterId}
Create one encounter

Create one encounter in the person identified by his/her id. If the person does not yet exist, it is created
automatically.

If the encounter already exists, an error 403 is returned.

Parameters

• personId (string) – the id of the person

• encounterId (string) – the id of the encounter

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

• algorithm (string) – Hint about the algorithm to be used

Status Codes

• 201 Created – Creation successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned

• 400 Bad Request – Bad request

• 403 Forbidden – Creation not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons/{personId}/encounters/{encounterId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"encounterId": "string",
"encounterType": "string",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",

(continues on next page)

7.3. Technical Specifications 109

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
]

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: createResponse

POST ${request.query.callback}
Create one encounter response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"personId": "string",
"encounterId": "string"

}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

7.3. Technical Specifications 110

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/persons/{personId}/encounters/{encounterId}
Read one encounter

Parameters

• personId (string) – the id of the person

• encounterId (string) – the id of the encounter

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

Status Codes

• 200 OK – Read successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{personId}/encounters/{encounterId}?transactionId=string HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"encounterId": "string",
"encounterType": "string",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",

(continues on next page)

7.3. Technical Specifications 111

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
]

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: readResponse

POST ${request.query.callback}
Read one encounter response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"encounterId": "string",
"encounterType": "string",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

(continues on next page)

7.3. Technical Specifications 112

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
]

}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

PUT /v1/persons/{personId}/encounters/{encounterId}
Update one encounter

Parameters

• personId (string) – the id of the person

• encounterId (string) – the id of the encounter

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

• algorithm (string) – Hint about the algorithm to be used

Status Codes

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned

• 204 No Content – Update successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

7.3. Technical Specifications 113

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

OSIA, Release 3.0.0

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

PUT /v1/persons/{personId}/encounters/{encounterId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"encounterId": "string",
"encounterType": "string",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
]

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: updateResponse

POST ${request.query.callback}
Update one encounter response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

7.3. Technical Specifications 114

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

DELETE /v1/persons/{personId}/encounters/{encounterId}
Delete one encounter

Delete one encounter from the person identified by his/her id. If this is the last encounter in the person, the
person is also deleted.

Parameters

• personId (string) – the id of the person

• encounterId (string) – the id of the encounter

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

Status Codes

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned

• 204 No Content – Delete successful

• 400 Bad Request – Bad request

• 403 Forbidden – Delete not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

7.3. Technical Specifications 115

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: deleteResponse

POST ${request.query.callback}
Delete one encounter response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/persons/{personId}/encounters/{encounterId}/templates
Read biometrics templates

Parameters

• personId (string) – the id of the person

7.3. Technical Specifications 116

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

• encounterId (string) – the id of the encounter

Query Parameters

• biometricType (string) – the type of biometrics to return

• biometricSubType (string) – the sub-type of biometrics to return

• templateFormat (string) – the format of the template to return

• qualityFormat (string) – the format of the quality to return

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

Status Codes

• 200 OK – Operation successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record or unkown biometrics

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{personId}/encounters/{encounterId}/templates?transactionId=string HTTP/
→˓1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"template": "c3RyaW5n",
"templateFormat": "ISO_19794_2",
"quality": 1,
"qualityFormat": "ISO_19794",
"vendor": "string",
"algorithm": "string"

}
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,

(continues on next page)

7.3. Technical Specifications 117

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

"message": "string"
}

Callback: readTemplateResponse

POST ${request.query.callback}
Read biometrics templates response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
{

"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"template": "c3RyaW5n",
"templateFormat": "ISO_19794_2",
"quality": 1,
"qualityFormat": "ISO_19794",
"vendor": "string",
"algorithm": "string"

}
]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/persons/{personId}/encounters
Create one encounter and generate its ID

Create one encounter in the person identified by his/her id. If the person does not yet exist, it is created
automatically.

Parameters

7.3. Technical Specifications 118

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

• algorithm (string) – Hint about the algorithm to be used

Status Codes

• 200 OK – creation successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned

• 400 Bad Request – Bad request

• 403 Forbidden – Creation not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons/{personId}/encounters?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"encounterId": "string",
"encounterType": "string",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
]

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"personId": "string",

(continues on next page)

7.3. Technical Specifications 119

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

"encounterId": "string"
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: createResponse

POST ${request.query.callback}
Create one encounter and generate its ID response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"personId": "string",
"encounterId": "string"

}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

7.3. Technical Specifications 120

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

GET /v1/persons/{personId}/encounters
Read all encounters of one person

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

Status Codes

• 200 OK – Read successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{personId}/encounters?transactionId=string HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"encounterId": "string",
"encounterType": "string",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,

(continues on next page)

7.3. Technical Specifications 121

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

"compression": "NONE"
}

]
}

]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: readAllResponse

POST ${request.query.callback}
Read all encounters response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
{

"encounterId": "string",
"encounterType": "string",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",

(continues on next page)

7.3. Technical Specifications 122

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
]

}
]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

DELETE /v1/persons/{personId}
Delete a person and all its encounters

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

Status Codes

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned

• 204 No Content – Delete successful

• 400 Bad Request – Bad request

• 403 Forbidden – Delete not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

(continues on next page)

7.3. Technical Specifications 123

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: deleteResponse

POST ${request.query.callback}
Delete a person response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Search

POST /v1/identify/{galleryId}
Biometric identification

Identification based on biometric data from one gallery

7.3. Technical Specifications 124

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

Parameters

• galleryId (string) – the id of the gallery

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

• maxNbCand (integer) – the maximum number of candidates

• threshold (number) – the algorithm threshold

• accuracyLevel (string) – the accuracy level expected for this request

Status Codes

• 200 OK – Request executed. Identification result is returned.

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned

• 400 Bad Request – Bad request

• 403 Forbidden – Identification not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/identify/{galleryId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"filter": {

"dateOfBirthMin": "1980-01-01",
"dateOfBirthMax": "2019-12-31"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
]

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"personId": "string",
"rank": 1,
"score": 1.0,
"scoreList": [

{

(continues on next page)

7.3. Technical Specifications 125

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN"

}
]

}
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: identifyResponse

POST ${request.query.callback}
Biometric identification response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
{

"personId": "string",
"rank": 1,
"score": 1.0,
"scoreList": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN"

}
]

}
]

Example request:

7.3. Technical Specifications 126

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/identify/{galleryId}/{personId}
Biometric identification based on existing data

Identification based on existing data from one gallery

Parameters

• galleryId (string) – the id of the gallery

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

• maxNbCand (integer) – the maximum number of candidates

• threshold (number) – the algorithm threshold

• accuracyLevel (string) – the accuracy level expected for this request

Status Codes

• 200 OK – Request executed. Identification result is returned.

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned

• 400 Bad Request – Bad request

• 403 Forbidden – Identification not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/identify/{galleryId}/{personId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"dateOfBirthMin": "1980-01-01",
"dateOfBirthMax": "2019-12-31"

}

Example response:

7.3. Technical Specifications 127

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"personId": "string",
"rank": 1,
"score": 1.0,
"scoreList": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN"

}
]

}
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: identifyResponse

POST ${request.query.callback}
Biometric identification based on existing data response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
{

"personId": "string",
"rank": 1,
"score": 1.0,
"scoreList": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",

(continues on next page)

7.3. Technical Specifications 128

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

"biometricSubType": "UNKNOWN"
}

]
}

]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/verify/{galleryId}/{personId}
Biometric verification

Verification of one set of biometric data and a record in the system

Parameters

• galleryId (string) – the id of the gallery

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

• threshold (number) – the algorithm threshold

• accuracyLevel (string) – the accuracy level expected for this request

Status Codes

• 200 OK – Verification execution successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned

• 400 Bad Request – Bad request

• 404 Not Found – Unknown record

• 403 Forbidden – Verification not allowed

• 500 Internal Server Error – Unexpected error

Example request:

7.3. Technical Specifications 129

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

POST /v1/verify/{galleryId}/{personId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
]

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"decision": true,
"scores": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN"

}
]

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: verifyResponse

POST ${request.query.callback}
Biometric verification response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

7.3. Technical Specifications 130

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

OSIA, Release 3.0.0

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"decision": true,
"scores": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN"

}
]

}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/verify
Biometric verification with two sets of data

Verification of two sets of biometric data

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

• threshold (number) – the algorithm threshold

• accuracyLevel (string) – the accuracy level expected for this request

Status Codes

• 200 OK – Verification execution successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned

• 400 Bad Request – Bad request

• 403 Forbidden – Verification not allowed

7.3. Technical Specifications 131

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

OSIA, Release 3.0.0

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/verify?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"biometricData1": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
],
"biometricData2": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-04-28",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE"

}
]

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"decision": true,
"scores": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN"

}
]

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

(continues on next page)

7.3. Technical Specifications 132

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

(continued from previous page)

{
"code": 1,
"message": "string"

}

Callback: verifyResponse

POST ${request.query.callback}
Biometric verification with two sets of data response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"decision": true,
"scores": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN"

}
]

}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

7.3. Technical Specifications 133

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

Gallery

GET /v1/galleries
Read the ID of all the galleries

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

Status Codes

• 200 OK – Operation successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/galleries?transactionId=string HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
"string"

]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: readGalleriesResponse

POST ${request.query.callback}
Read the ID of all the galleries response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

7.3. Technical Specifications 134

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

OSIA, Release 3.0.0

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
"string"

]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/galleries/{galleryId}
Read the content of one gallery

Parameters

• galleryId (string) – the id of the gallery

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority

Status Codes

• 200 OK – Operation successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. The transaction ID is returned

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/galleries/{galleryId}?transactionId=string HTTP/1.1
Host: example.com

7.3. Technical Specifications 135

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"personId": "string",
"encounterId": "string"

}
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: readGalleryContentResponse

POST ${request.query.callback}
Read the content of one gallery response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
{

"personId": "string",
"encounterId": "string"

}
]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

7.3. Technical Specifications 136

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 3.0.0

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Data Model

To be completed

7.3.6 Third Party Services

Services

To be defined

7.3. Technical Specifications 137

List of Tables

2.1 Components . 6
2.2 Interfaces List . 8
2.3 Components vs Interfaces Mapping . 10

5.1 Event Type . 19
5.2 Person Attributes . 23
5.3 Certificate Attributes . 23
5.4 Union Attributes . 23
5.5 Filiation Attributes . 23
5.6 Document Type . 23
5.7 Enrolment Data Model . 26
5.8 Population Registry Data Model . 30
5.9 Biometric Services Options . 36
5.10 Biometric Data Model . 36
5.11 Enrolment Data Model . 45

6.1 Enrolment Data Model . 48
6.2 Event Type . 50
6.3 Person Attributes . 54
6.4 Certificate Attributes . 54
6.5 Union Attributes . 54
6.6 Filiation Attributes . 54
6.7 Document Type . 54
6.8 Population Registry Data Model . 59
6.9 Event Type . 62
6.10 Person Attributes . 66
6.11 Certificate Attributes . 66
6.12 Union Attributes . 66
6.13 Filiation Attributes . 66
6.14 Document Type . 66
6.15 Biometric Services Options . 72
6.16 Biometric Data Model . 72

7.1 Event Type & Message . 83
7.2 Person Attributes . 91
7.3 Matching Error Object . 92
7.4 Expression Object . 92
7.5 Error Object . 92

138

List of Figures

1.1 The dependency challenge . 2

2.1 Components identified as part of the identity ecosystem . 7
2.2 Birth Use Case . 12
2.3 Deduplication Use Case . 13
2.4 Bank account opening Use Case . 14
2.5 Collaborative identity control . 14

5.1 Subscription & Notification Process . 18
5.2 readPersonAttributes Sequence Diagram . 20
5.3 matchPersonAttributes Sequence Diagram . 20
5.4 verifyPersonAttributes Sequence Diagram . 21
5.5 queryPersonUIN Sequence Diagram . 21
5.6 queryPersonList Sequence Diagram . 22
5.7 readDocument Sequence Diagram . 22
5.8 generateUIN Sequence Diagram . 24
5.9 Population Registry Data Model . 31
5.10 Biometric Data Model . 37

6.1 Subscription & Notification Process . 49
6.2 readPersonAttributes Sequence Diagram . 51
6.3 matchPersonAttributes Sequence Diagram . 51
6.4 verifyPersonAttributes Sequence Diagram . 52
6.5 queryPersonUIN Sequence Diagram . 52
6.6 queryPersonList Sequence Diagram . 53
6.7 readDocument Sequence Diagram . 53
6.8 Population Registry Data Model . 60
6.9 Subscription & Notification Process . 61
6.10 readPersonAttributes Sequence Diagram . 63
6.11 matchPersonAttributes Sequence Diagram . 63
6.12 verifyPersonAttributes Sequence Diagram . 64
6.13 queryPersonUIN Sequence Diagram . 64
6.14 queryPersonList Sequence Diagram . 65
6.15 readDocument Sequence Diagram . 65
6.16 generateUIN Sequence Diagram . 67
6.17 Biometric Data Model . 73

139

HTTP Routing Table

/${request.query.callback}
POST ${request.query.callback}, 136

/v1
GET /v1/galleries, 105
GET /v1/galleries/{galleryId}, 106
GET /v1/persons, 87
GET /v1/persons/{personId}, 93
GET /v1/persons/{personId}/encounters,

121
GET /v1/persons/{personId}/encounters/{encounterId},

111
GET /v1/persons/{personId}/encounters/{encounterId}/templates,

116
GET /v1/persons/{personId}/identities,

95
GET /v1/persons/{personId}/identities/{identityId},

99
GET /v1/persons/{personId}/reference,

104
GET /v1/persons/{uin}, 88
GET /v1/persons/{uin}/document, 90
GET /v1/subscriptions, 81
GET /v1/subscriptions/confirm, 82
GET /v1/topics, 78
POST /v1/identify/{galleryId}, 124
POST /v1/identify/{galleryId}/{personId},

127
POST /v1/persons, 107
POST /v1/persons/{personId}, 92
POST /v1/persons/{personId}/encounters,

118
POST /v1/persons/{personId}/encounters/{encounterId},

109
POST /v1/persons/{personId}/identities,

96
POST /v1/persons/{personId}/identities/{identityId},

97
POST /v1/persons/{uin}/match, 89
POST /v1/persons/{uin}/verify, 89
POST /v1/subscriptions, 80
POST /v1/topics, 78
POST /v1/topics/{uuid}/publish, 79

POST /v1/uin, 86
POST /v1/verify, 131
POST /v1/verify/{galleryId}/{personId},

129
PUT /v1/persons/{personId}, 93
PUT /v1/persons/{personId}/encounters/{encounterId},

113
PUT /v1/persons/{personId}/identities/{identityId},

100
PUT /v1/persons/{personId}/identities/{identityId}/reference,

103
PUT /v1/persons/{personId}/identities/{identityId}/status,

103
DELETE /v1/persons/{personId}, 94
DELETE /v1/persons/{personId}/encounters/{encounterId},

115
DELETE /v1/persons/{personId}/identities/{identityId},

102
DELETE /v1/subscriptions/{uuid}, 82
DELETE /v1/topics/{uuid}, 79
PATCH /v1/persons/{personId}/identities/{identityId},

101

/{$request.query.address}
POST {$request.query.address}, 81

140

Index

A
ABIS, 77

C
CMS, 77
CR, 77
Credential, 77

E
Encounter, 77

F
Functional systems and registries, 77

H
HTTP Status Codes, 77

M
Mime Types, 77

O
OSIA, 78

P
PR, 78

R
RFC

RFC 7396, 28, 56

U
UIN, 78

141

	Introduction
	Problem Statement: vendor lock-in
	The OSIA Initiative
	Diffusion, Audience, and Access
	Document Overview
	Convention and Typographical Rules
	Revision History

	Functional View
	Components: Standardized Definition and Scope
	Interfaces
	Components vs Interfaces Mapping
	Use Cases - How to Use OSIA
	Birth Use Case
	Death Use Case
	Marriage Use Case
	Deduplication Use Case
	ID Card Request Use Case
	Bank account opening Use Case
	Police identity control Use Case

	Security & Privacy
	Introduction
	Virtual UIN
	Authorization
	GDPR

	OSIA Versions & Referencing
	Interfaces
	Notification
	Services
	Dictionaries

	Data Access
	Services
	Dictionaries

	UIN Management
	Services

	Enrollment Services
	Services
	Filter
	Transaction ID
	Data Model

	Population Registry Services
	Services
	Data Model

	Biometrics
	Services
	Options
	Data Model

	Credential Services
	Services

	ID Usage
	Services

	Under discussion
	Services
	Filter
	Transaction ID
	Data Model

	Components
	Enrollment Component
	Enrollment Services

	Population Registry
	Notification
	Data Access
	Population Registry Services

	Civil Registry
	Notification
	Data Access

	UIN Generator
	UIN Management

	ABIS
	Biometrics

	Credential Management System
	Credential Services

	Third Party Services
	ID Usage

	Annexes
	Glossary
	Data Format
	Technical Specifications
	Notification
	UIN Management
	Data Access
	Population Registry Management
	Biometrics
	Third Party Services

	HTTP Routing Table
	Index

