

OSIA Specification

	1. Introduction
	1.1. Problem Statement: vendor lock-in

	1.2. The OSIA Initiative

	1.3. Diffusion, Audience, and Access

	1.4. Document Overview

	1.5. Convention and Typographical Rules

	1.6. Revision History

	2. Functional View
	2.1. Components: Standardized Definition and Scope

	2.2. Interfaces

	2.3. Components vs Interfaces Mapping

	2.4. Use Cases - How to Use OSIA
	2.4.1. Birth Use Case

	2.4.2. Death Use Case

	2.4.3. Marriage Use Case

	2.4.4. Deduplication Use Case

	2.4.5. ID Card Request Use Case

	2.4.6. Bank account opening Use Case

	2.4.7. Police identity control Use Case

	3. Security & Privacy
	3.1. Introduction

	3.2. Virtual UIN

	3.3. Authorization
	3.3.1. Principles

	3.3.2. Rules

	3.3.3. Scopes

	3.3.4. REST Interface Implementation

	3.4. Privacy by Design
	3.4.1. Privacy for end-to-end systems

	3.4.2. PII actors

	3.4.3. Data subject rights

	3.4.4. What should OSIA API implementors do to prepare for safe PII?

	4. OSIA Versions & Referencing

	5. Interfaces
	5.1. Notification
	5.1.1. Services

	5.1.2. Dictionaries

	5.2. Data Access
	5.2.1. Services

	5.2.2. Dictionaries

	5.3. UIN Management
	5.3.1. Services

	5.4. Enrollment Services
	5.4.1. Services

	5.4.2. Attributes

	5.4.3. Transaction ID

	5.4.4. Data Model

	5.5. Population Registry Services
	5.5.1. Services

	5.5.2. Data Model

	5.6. Biometrics
	5.6.1. Services

	5.6.2. Options

	5.6.3. Data Model

	5.7. Credential Services
	5.7.1. Services

	5.7.2. Attributes

	5.8. ID Usage
	5.8.1. Services

	5.9. Under discussion
	5.9.1. Services

	5.9.2. Filter

	5.9.3. Transaction ID

	5.9.4. Data Model

	6. Components
	6.1. Enrollment Component
	6.1.1. Enrollment Services

	6.2. Population Registry
	6.2.1. Notification

	6.2.2. Data Access

	6.2.3. Population Registry Services

	6.3. Civil Registry
	6.3.1. Notification

	6.3.2. Data Access

	6.4. UIN Generator
	6.4.1. UIN Management

	6.5. ABIS
	6.5.1. Biometrics

	6.6. Credential Management System
	6.6.1. Credential Services

	6.7. Third Party Services
	6.7.1. ID Usage

	7. Annexes
	7.1. Glossary

	7.2. Data Format

	7.3. Technical Specifications
	7.3.1. Notification

	7.3.2. UIN Management

	7.3.3. Data Access

	7.3.4. Enrollment

	7.3.5. Population Registry Management

	7.3.6. Biometrics

	7.3.7. Third Party Services

1. Introduction

1.1. Problem Statement: vendor lock-in

Target 16.9 of the UN Sustainable Development Goals is to “provide legal identity for all, including birth registration”
by the year 2030. But there is a major barrier: the lack of vendor/provider and technology neutrality - commonly
known as “vendor lock-in”.

The lack of vendor and technology neutrality and its consequences becomes apparent when a customer needs to
replace one component of the identity management solution with one from another provider, or expand the scope
of their solution by linking to new components. Main technology barriers are the following:

	Solution architectures are not interoperable by design. The lack of common definitions as to the overall
scope of an identity ecosystem, as well as in the main functionalities of a system’s components (civil registry,
biometric identification system, population registry etc.), blurs the lines between components and leads to
inconsistencies. This lack of so-called irreducibly modular architectures makes it difficult,
if not impossible, to switch to a third-party component intended to provide the same function and
leads to incompatibilities when adding a new component to an existing ecosystem.

	Standardized interfaces (APIs) do not exist. Components are often unable to communicate with each
other due to varying interfaces (APIs) and data formats, making it difficult to swap out components
or add new ones to the system.

For government policy makers tasked with implementing national identification systems, vendor lock-in
is now one of their biggest concerns.

[image: _images/vendorlockin.png]
Fig. 1.1 The dependency challenge

1.2. The OSIA Initiative

Launched by the not-for-profit Secure Identity Alliance, Open Standard Identity APIs (OSIA) is an
initiative created for the public good to address vendor lock-in problem.

OSIA addresses the vendor lock-in concern by providing a simple, open standards-based connectivity layer
between all key components within the national identity ecosystem.

OSIA scope is as follows:

1. Address the lack of common definitions within the identity ecosystem – NON PRESCRIPTIVE

Components of the identity ecosystem (civil registry, population registry, biometric identification system etc.)
from different vendors are functionally incompatible due to the absence of a common definition/understanding of
broader functionalities and scope.

OSIA first step has been to formalize definitions, scope and main functionalities of each component
within the identity ecosystem.

2. Create a set of standardized interfaces – PRESCRIPTIVE

This core piece of work develops the set of interfaces and standardized data formats to connect the multiple
identity ecosystem components to ensure seamless interaction via pre-defined services.

Process of interaction among components (hence type of services each component implements) is down to each government
to define and implement according to local laws and regulations.

With OSIA, governments are free to select the components they need, from the suppliers
they choose – without fear of lock in.

And because OSIA operates at the interface layer, interoperability is assured without the need to rearchitect
environments or rebuild solutions from the ground up. ID ecosystem components are simply swapped in and out
as the use case demands – from best-of-breed options already available on the market.

This real-world approach dramatically reduces operational and financial risk, increases the effectiveness of
existing identity ecosystems, and rapidly moves government initiatives from proof of concept to live environments.

1.3. Diffusion, Audience, and Access

This specification is hosted in GitHub [https://github.com/SecureIdentityAlliance/osia] and can be
downloaded from ReadTheDocs [https://osia.readthedocs.io/en/latest/].

This specification is licensed under The SIA License [https://raw.githubusercontent.com/SecureIdentityAlliance/osia/master/LICENSE].

Any country, technology partner or individual is free to download the functional and technical specifications
to implement it in their customized foundational and sectoral ID systems or components.
Governments can also reference OSIA as Open Standards in tenders.
For more information on how to reference OSIA please see Section OSIA Versions & Referencing.

1.4. Document Overview

This document aims at:

	formalizing definitions, scope and main functionalities of each component within the identity ecosystem,

	defining standardized interfaces and data format to connect the multiple ecosystem components to ensure
seamless interaction via pre-defined services.

This document is structured as follows:

	Chapter 1 Introduction: This chapter introduces the problem statement and the OSIA initiative.

	Chapter 2 Functional View: This chapter provides an overview of OSIA interfaces and how they can be mapped against the various identity ecosystem components. Finally, the chapter describes a series of use cases where different OSIA interfaces are implemented between multiple identity ecosystem components.

	Chapter 3 Security and Privacy: This chapter lists a set of Privacy and Security features embedded in OSIA interfaces specifications.

	Chapter 4 OSIA Versions and Referencing: This chapter describes the way OSIA interfaces can be referenced in documents and tenders.

	Chapter 5 Interfaces: This chapter describes the specifications of all OSIA interfaces.

	Chapter 6 Components: This chapter describes OSIA interfaces that each component of the identity ecosystem may implement.

1.5. Convention and Typographical Rules

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” in this document are to be interpreted as described in RFC 2119 [http://www.ietf.org/rfc/rfc2119.txt].

Code samples highlighted in blocks appear like that:

{
 "key": "value",
 "another_key": 23
}

Note

Indicates supplementary explanations and useful tips.

Warning

Indicates that the specific condition or procedure must be
respected.

1.6. Revision History

	Version

	Date

	Notes

	1.0.0

	2019-01

	First release

	2.0.0

	2019-06

	New name, new logo

	3.0.0

	2019-11

	PR & ABIS interfaces

	4.0.0

	2020-06

	Enrollment & CMS interfaces, Security

2. Functional View

2.1. Components: Standardized Definition and Scope

OSIA provides seamless interconnection between multiple components part of the identity ecosystem.

The components are defined as follows:

	The Enrollment component.

Enrollment is defined as a system to register biographic and
biometric data of individuals.

	The Population Registry (PR) component.

Population registry is defined as “an individualized data system, that is, a mechanism of continuous recording,
or of coordinated linkage, of selected information pertaining to each member of the resident population
of a country in such a way to provide the possibility of determining up-to-date information concerning
the size and characteristics of that population at selected time intervals. The population register is
the product of a continuous process, in which notifications of certain events, which may have been
recorded originally in different administrative systems, are automatically linked on a current basis.
A. method and sources of updating should cover all changes so that the characteristics of individuals in the
register remain current. Because of the nature of a population register, its organization, and also
its operation, must have a legal basis.” 1

	The UIN Generator component.

UIN generator is defined as a system to generate and manage unique identifiers.

	The Automated Biometric Identification System (ABIS) component.

An ABIS is defined as a system to detect
the identity of an individual when it is unknown, or to verify the individual’s identity when it is
provided, through biometrics.

	The Civil Registry (CR) component.

Civil registration is defined as “the continuous, permanent, compulsory and universal recording of the occurrence
and characteristics of vital events pertaining to the population, as provided through decree or regulation
is accordance with the legal requirement in each country.
Civil registration is carried out primarily for the purpose of establishing the documents provided by the law.” 2

	The Credential Management System (CMS) component.

CMS is defined as a system to manage the production and
issuance of credentials such as ID Cards, passports, driving licenses, digital ID, etc.

	The Third Party Services component.

TBD

Table 2.1 Components

	ID Ecosystem Component

	Data

	Functions

	Enrollment

	
	Alpha

	UIN

	History

	Supporting documents

	
	Recording application

	Collecting personal data

	PR

	
	Alpha

	UIN

	History

	Supporting documents

	
	Identity attributes storage

	Identity Life cycle management

	UIN Gen

	
	Alpha

	UIN

	
	UIN generation

	ABIS

	
	UIN

	Biometric data (images and templates)

	
	Authentication (1:1)

	Identification (1:N)

	Quality control and adjudication

	CR

	
	Events

	UIN

	History

	Supporting documents

	
	Events storage

	Certificate production

	Workflow

	CMS

	
	Alpha

	UIN

	History

	Supporting documents

	
	Credential data storage

	Credential Life cycle management

	Credential Production

	Workflow

	SMS and email server

	Third Party Services

	TBD

	KYC/auth

The components are represented on the following diagram:

[image: _images/components.svg]Fig. 2.1 Components identified as part of the identity ecosystem

2.2. Interfaces

This chapter describes the following interfaces:

	Notification

A set of services to manage notifications for different types of events as for instance birth and death.

	Data access

A set of services to access data.

The design is based on the following assumptions:

	All persons recorded in a registry have a UIN. The UIN can be used as a key to access person data for all records.
Please note that the UIN is the same throughout all registries (see Chapter 3 - Security & Privacy).

	The registries (civil, population, or other) are considered as centralized systems that are connected.
If one registry is architectured in a decentralized way, one of its component must be centralized, connected to the network,
and in charge of the exchanges with the other registries.

	Since the registries are customized for each business needs, dictionaries must be explicitly defined to describe the attributes,
the event types, and the document types. See Data Access for samples of those dictionaries.

	The relationship parent/child is not mandatory in the population registry. A population registry implementation may manage this
relationship or may ignore it and rely on the civil registry to manage it.

	All persons are stored in the population registry. There is no record in the civil registry that is not also in the population registry.

	UIN Management

A set of services to manage the unique identifier.

	Enrollment Services

A set of services to manage biographic and biometric data upon collection.

	Population Registry Services

A set of services to manage a registry of the population.

	Biometrics

A set of services to manage biometric data and databases.

	Credential Services

A set of services to manage credentials, physical and digital.

	ID Usage

A set of services implemented on top of identity systems to favour third parties consumption of identity data.

	Under discussion

A set of services under discussion and not yet linked to any specific tag.

The following table describes in detail the interfaces and associated services.

Table 2.2 Interfaces List

	Services

	Description

	Notification

	Subscribe

	Subscribe a URL to receive notifications sent to one topic

	List Subscription

	Get the list of all the subscriptions registered in the server

	Unsubscribe

	Unsubscribe a URL from the list of receiver for one topic

	Confirm

	Confirm that the URL used during the subscription is valid

	Create Topic

	Create a new topic

	List Topics

	List all the existing topics

	Delete Topic

	Delete a topic

	Publish

	Notify of a new event all systems that subscribed to this topic

	Data Access

	Read Person Attributes

	Read person attributes

	Match Person Attributes

	Check the value of attributes without exposing private data

	Verify Person Attributes

	Evaluate simple expressions on person’s attributes without exposing private data

	Query Person UIN

	Query the persons by a set of attributes, used when the UIN is unknown

	Query Person List

	Query the persons by a list of attributes and their values

	Read document

	Read in a selected format (PDF, image, etc.) a document such as a marriage certificate

	UIN Management

	Generate UIN

	Generate a new UIN

	Enrollment Services

	Create Enrollment

	Insert a new enrollment

	Read Enrollment

	Retrieve an enrollment

	Update Enrollment

	Update an enrollment

	Partial Update Enrollment

	Update part of an enrollment

	Finalize Enrollment

	Finalize an enrollment (mark it as completed)

	Delete Enrollment

	Delete an enrollment

	Find Enrollments

	Retrieve a list of enrollments which match passed in search criteria

	Send Buffer

	Send a buffer (image, etc.)

	Get Buffer

	Get a buffer

	Population Registry Services

	Create Person

	Create a new person

	Read Person

	Read the attributes of a person

	Update Person

	Update a person

	Delete Person

	Delete a person and all its identities

	Merge Persons

	Merge two persons

	Create Identity

	Create a new identity in a person

	Read Identity

	Read one or all the identities of one person

	Update Identity

	Update an identity. An identity can be updated only in the status claimed

	Partial Update Identity

	Update part of an identity. Not all attributes are mandatory.

	Delete Identity

	Delete an identity

	Set Identity Status

	Set an identity status

	Define Reference

	Define the reference identity of one person

	Read Reference

	Read the reference identity of one person

	Read Galleries

	Read the ID of all the galleries

	Read Gallery Content

	Read the content of one gallery, i.e. the IDs of all the records linked to this gallery

	Biometrics

	Create Encounter

	Create a new encounter. No identify is performed

	Read Encounter

	Read the data of an encounter

	Update Encounter

	Update an encounter

	Delete Encounter

	Delete an encounter

	Merge Encounter

	Merge two sets of encounters

	Set Encounter Status

	Set an encounter status

	Read Template

	Read the generated template

	Read Galleries

	Read the ID of all the galleries

	Read Gallery content

	Read the content of one gallery, i.e. the IDs of all the records linked to this gallery

	Identify

	Identify a person using biometrics data and filters on biographic or contextual data

	Verify

	Verify an identity using biometrics data

	Credential Services

	Create Credential Request

	Request issuance of a secure credential

	Read Credential Request

	Retrieve the data/status of a credential request

	Update Credential Request

	Update the requested issuance of a secure credential

	Delete Credential Request

	Delete/cancel the requested issuance of a secure document / credential

	Read Credential

	Retrieve the attributes/status of an issued credential (smart card, mobile, passport, etc.)

	Suspend Credential

	Suspend an issued credential. For electronic credentials this will suspend any PKI certificates that are present

	Unsuspend Credential

	Unsuspend an issued credential. For electronic credentials this will unsuspend any PKI certificates that are present

	Cancel Credential

	Cancel an issued credential. For electronic credentials this will revoke any PKI certificates that are present

	ID Usage

	Verify ID

	Verify Identity based on UIN and set of attributes (biometric data, demographics, credential)

	Identify

	Identify a person based on a set of attributes (biometric data, demographics, credential)

	Read Attributes

	Read person attributes

	Read Attributes set

	Read person attributes corresponding to a predefined set name

	Under discussion

	List Credential Profiles

	Retrieve the list of credential profiles

	Read Credential Profiles

	Retrieve the credential profile

	Update Document Val Status

	Updates the status of a document validation

	Read Document Val Status

	Retrieve the status of a document validation

	Update Biometric Val Status

	Updates the status of a biometric validation

	Read Biometric Val Status

	Retrieve the status of a biometric validation

	Update Biographic Val Status

	Updates the status of a biographic validation

	Read Biographic Val Status

	Retrieve the status of a biographic validation

2.3. Components vs Interfaces Mapping

The interfaces described in the following chapter can be mapped against ID ecosystem components as per the table below:

Table 2.3 Components vs Interfaces Mapping

	
	Components

	Interfaces

	Enroll
Clt

	Enroll
Srv

	PR

	UIN Gen

	ABIS

	CR

	CMS

	3rd PS

	Notification

	Subscribe

	
	
	U

	
	U

	U

	U

	

	List Subscription

	
	
	U

	
	U

	U

	U

	

	Unsubscribe

	
	
	U

	
	U

	U

	U

	

	Confirm

	
	
	U

	
	U

	U

	U

	

	Create Topic

	
	
	U

	
	U

	U

	U

	

	List Topics

	
	
	U

	
	U

	U

	U

	

	Delete Topic

	
	
	U

	
	U

	U

	U

	

	Publish

	
	
	U

	
	U

	U

	U

	

	Data Access

	Read Person Attributes

	
	U

	IU

	
	U

	IU

	
	U

	Match Person Attributes

	
	U

	IU

	
	
	IU

	
	U

	Verify Person Attributes

	
	U

	IU

	
	
	IU

	
	U

	Query Person UIN

	
	U

	IU

	
	
	IU

	
	

	Query Person List

	
	
	
	
	
	U

	
	

	Read Document

	
	U

	IU

	
	
	IU

	
	

	UIN Management

	Generate UIN

	
	
	U

	I

	
	U

	
	

	Enrollment Services

	Create Enrollment

	U

	I

	
	
	
	
	
	

	Read Enrollment

	U

	I

	
	
	
	
	
	

	Update Enrollment

	U

	I

	
	
	
	
	
	

	Partial Update Enrollment

	U

	I

	
	
	
	
	
	

	Finalize Enrollment

	U

	I

	
	
	
	
	
	

	Delete Enrollment

	U

	I

	
	
	
	
	
	

	Find Enrollments

	U

	I

	
	
	
	
	
	

	Send Buffer

	U

	I

	
	
	
	
	
	

	Get Buffer

	U

	I

	
	
	
	
	
	

	Population Registry Services

	Create Person

	
	
	I

	
	U

	
	U

	

	Read Person

	
	
	I

	
	U

	
	U

	U

	Update Person

	
	
	I

	
	U

	
	U

	

	Delete Person

	
	
	I

	
	U

	
	U

	

	Merge Person

	
	
	I

	
	U

	
	
	

	Create Identity

	
	
	I

	
	
	
	
	

	Read Identity

	
	
	I

	
	
	
	
	

	Update Identity

	
	
	I

	
	
	
	
	

	Partial Update Identity

	
	
	I

	
	
	
	
	

	Delete Identity

	
	
	I

	
	
	
	
	

	Set Identity Status

	
	
	I

	
	
	
	
	

	Define Reference

	
	
	I

	
	
	
	
	

	Read Reference

	
	
	I

	
	
	
	
	

	Read Galleries

	
	
	I

	
	
	
	
	

	Read Gallery Content

	
	
	I

	
	
	
	
	

	Biometrics

	Create Encounter

	
	U

	U

	
	I

	
	
	

	Read Encounter

	
	U

	U

	
	I

	
	
	U

	Update Encounter

	
	U

	U

	
	I

	
	
	

	Delete Encounter

	
	U

	U

	
	I

	
	
	

	Merge Encounter

	
	
	U

	
	I

	
	
	

	Set Encounter Status

	
	U

	U

	
	I

	
	
	

	Read Template

	
	U

	U

	
	I

	
	
	

	Read Galleries

	
	
	
	
	
	
	
	

	Read Gallery Content

	
	U

	U

	
	I

	
	
	

	Identify

	
	U

	
	
	I

	
	
	U

	Verify

	
	U

	
	
	I

	
	
	U

	Credential Services

	Create Credential Request

	
	
	
	
	
	
	I

	

	Read Credential Request

	
	
	
	
	
	
	I

	

	Update Credential Request

	
	
	
	
	
	
	I

	

	Delete Credential Request

	
	
	
	
	
	
	I

	

	Read Credential

	
	
	
	
	
	
	I

	

	Suspend Credential

	
	
	
	
	
	
	I

	

	Unsuspend Credential

	
	
	
	
	
	
	I

	

	Cancel Credential

	
	
	
	
	
	
	I

	

	ID Usage

	Verify ID

	
	
	
	
	
	
	
	I

	Identify ID

	
	
	
	
	
	
	
	I

	Read Attributes

	
	
	
	
	
	
	
	I

	Read Attributes set

	
	
	
	
	
	
	
	I

	Under discussion

	List Cred Profiles

	
	
	
	
	
	
	
	

	Read Cred Profiles

	
	
	
	
	
	
	
	

	Update Document Val Status

	
	
	
	
	
	
	
	

	Read Document Val Status

	
	
	
	
	
	
	
	

	Update Biometric Val Status

	
	
	
	
	
	
	
	

	Read Biometric Val Status

	
	
	
	
	
	
	
	

	Update Biographic Val Status

	
	
	
	
	
	
	
	

	Read Biographic Val Status

	
	
	
	
	
	
	
	

where:

	I is used when a service is implemented (provided) by a component

	U is used when a service is used (consumed) by a component

2.4. Use Cases - How to Use OSIA

Below are a set of examples of how OSIA interfaces could be implemented in various use cases.

2.4.1. Birth Use Case

[image: !include "skin.iwsd" hide footbox actor "Mother or Father" as parent participant "CR" as CR participant "PR" as PR participant "UIN Generator" as UINGen parent -> CR activate parent activate CR group 1. Checks CR -> PR: matchPersonAttributes(mother attributes) CR -> PR: matchPersonAttributes(father attributes) CR -> PR: readPersonAttributes(mother) CR -> PR: readPersonAttributes(father) CR -> PR: queryPersonUIN(new born attributes) CR -> CR: Additional checks end group 2. Creation CR -> UINGen: generateUIN() CR -> CR note right: register the birth CR -->> parent: certificate destroy parent end group 3. Notification CR ->> PR: publish(birth,UIN) deactivate CR ... PR -> CR: readPersonAttributes(new born) activate PR PR -> CR: readPersonAttributes(mother) PR -> CR: readPersonAttributes(father) PR -> PR note right: create/update identities deactivate PR end]

Fig. 2.2 Birth Use Case

	Checks

When a request is submitted, the CR may run checks against the data available in the PR using:

	matchPersonAttributes: to check the exactitude of the parents’ attributes as known in the PR

	readPersonAttributes: to get missing data about the parents’s identity

	qureyPersonUIN: to check if the new born is already known to PR or not

How the CR will process the request in case of data discrepancy is specific to each CR implementation
and not in the scope of this document.

	Creation

The first step after the checks is to generate a new UIN. To do so, the CR requests a new UIN to the PR using generateUIN service.
At this point the birth registration takes place.
How the CR will process the birth registration is specific to each CR implementation and not in the scope of this document.

	Notification

As part of the birth registration, it is the responsibility of the CR to notify other systems, including the PR,
of this event using:

	publish: to send a birth along with the new UIN.

The PR, upon reception of the birth event, will update the identity registry with this new identity using:

	readPersonAttributes: to get the attributes of interest to the PR for the parents if relevant and the new child.

2.4.2. Death Use Case

To be completed

2.4.3. Marriage Use Case

To be completed

2.4.4. Deduplication Use Case

During the lifetime of a registry, it is possible that duplicates are detected. This can happen for instance
after the addition of biometrics in the system. When a registry considers that two records are actually the same
and decides to merge them, a notification must be sent.

[image: !include "skin.iwsd" hide footbox participant "PR" as PR participant "CR" as CR PR -> PR: deduplicate() activate PR PR ->> CR: notify(duplicate,[UIN]) deactivate PR ... CR -> PR: readPersonAttributes(UIN) activate CR activate PR CR -> CR: merge() deactivate PR note right: merge/register duplicate deactivate CR]

Fig. 2.3 Deduplication Use Case

How the target of the notification should react is specific to each subsystem.

2.4.5. ID Card Request Use Case

To be completed

2.4.6. Bank account opening Use Case

[image: !include "skin.iwsd" hide footbox actor "Citizen" as citizen actor "Bank attendant" as bank participant "Third Party Services" as usage participant "PR" as PR citizen -> bank : Go to agency activate citizen activate bank group 1. Verify Identity citizen -> bank : UIN + Biometrics deactivate citizen activate usage bank -> usage : verifyIdentity(UIN, biometric or civil data or credential) usage -> bank : Y/N bank -> bank : create account for UIN end group 2. Get certified Attributes bank -> usage : readAttributeSet (UIN, attribute set name) usage -> PR : readPersonAttributes(UIN) usage -> bank : List of attributes values note right: fill-in attributes in bank account end deactivate citizen deactivate bank]

Fig. 2.4 Bank account opening Use Case

2.4.7. Police identity control Use Case

[image: !include "skin.iwsd" hide footbox actor "Citizen" as citizen actor "Policeman" as police participant "Third Party Services" as usage participant "ABIS" as ABIS participant "PR" as PR citizen -> police : Show ID card citizen -> police : Capture fingerprint activate citizen activate police group 1. Verify Identity citizen -> police : UIN + Biometrics deactivate citizen activate usage police -> usage : verifyIdentity(UIN, biometric or civil data or credential) usage -> police : Y/N end group 2. Show corresponding attributes police -> usage : readAttributeSet (UIN1, attribute set name) usage -> PR : readPersonAttributes(UIN1) usage -> police : List of attributes values police -> usage : readAttributeSet (UIN2, attribute set name) usage -> PR : readtPersonAttributes(UIN2) usage -> police : List of attributes values police -> usage : readAttributeSet (UIN3, attribute set name) usage -> PR : readPersonAttributes(UIN3) usage -> police : List of attributes values note right: display attributes for each candidate end]

Fig. 2.5 Collaborative identity control

Footnotes

	1

	Handbook on Civil Registration and Vital Statistics Systems: Management, Operation and Maintenance,
Revision 1, United Nations, New York, 2018, available at:
https://unstats.un.org/unsd/demographic-social/Standards-and-Methods/files/Handbooks/crvs/crvs-mgt-E.pdf , para 65.

	2

	Principles and Recommendations for a Vital Statistics System, United Nations publication
Sales Number E.13.XVII.10, New York, 2014, paragraph 279

3. Security & Privacy

3.1. Introduction

Insert diagram of security & privacy features

3.2. Virtual UIN

Explain: using a different UIN in each subsystem - no direct/easy
links between the records in different subsystems

3.3. Authorization

Because OSIA is a set of interfaces/API and not a full system, this chapter describes only how to secure those API,
through the usage of standard JWT, and not how to generate and protect such tokens, nor how to secure the full system.

Securing the API is one mandatory step on the way to a secure system, but securing a full system includes
more than just that: hardware & software components, processes & methodology, audit, etc.
that are not in the scope of this document.

3.3.1. Principles

Securing OSIA services is implemented with the following principles:

	Rely on JWT: “JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be transferred between two parties”
It can be “digitally signed or integrity protected with a Message Authentication Code (MAC) and/or encrypted”.
[RFC 7519 [https://tools.ietf.org/html/rfc7519.html]]

	Tokens of type “Bearer Token” are used. [RFC 6750 [https://tools.ietf.org/html/rfc6750.html]]
The generation and management of those tokens are not in the scope of this document.

	Validating the token is the responsibility of the service implementation, with the help of components
not described in this document (PKI, authorization server, etc.)

	The service implementations are responsible for extracting information from the token
and give access or not to the service according to the claims contained in the token
and the scope defined for each service in this document.

	The service implementations are free to change the security scheme used, for instance to use
OAuth2 or OpenID Connect, if it fits the full system security policy. Scopes must not be changed.

	All HTTP exchanges must be secured with TLS. Mutual authentication is not mandatory.

Note

The added use of peer-to-peer payload encryption - e.g. to protect biometric data - is
not in the scope of this document.

Note

OSIA does not define ACL (Access Control List) to protect the access to a subset of the data.
This may be added in a future version.

Warning

Bearer tokens are sensitive and subject to security issues if not handled properly. Please refer to
JSON Web Token Best Current Practices [https://tools.ietf.org/id/draft-ietf-oauth-jwt-bcp-02.html]
for advice on proper implementation.

3.3.2. Rules

All scopes are named according to the following rules:

application[.resource].action

where:

	application is a key identifying the interface group listed in Interfaces.
Examples: notif, pr, cr, abis, etc.

	resource is a key identifying the resource. Examples: person, encounter, identity, etc.

	action is one of:

	read: for read access to the data represented by the resource and managed by the application.

	write: for creating, updating or deleting the data.

	or another value, for specific actions such as match or verify that need to be
distinguished from a general purpose read or write for proper segregation.

Scopes should be less than 20 characters when possible to limit the size of the bearer token.

3.3.3. Scopes

The following table is a summary of all scopes defined in OSIA.

Table 3.1 Scopes List

	Services

	Scope

	Notification

	Subscribe

	notif.sub.write

	List Subscription

	notif.sub.read

	Unsubscribe

	notif.sub.write

	Confirm

	notif.sub.write

	Create Topic

	notif.topic.write

	List Topics

	notif.topic.read

	Delete Topic

	notif.topic.write

	Publish

	notif.topic.publish

	Data Access

	Read Person Attributes

	pr.person.read or cr.person.read

	Match Person Attributes

	pr.person.match or cr.person.match

	Verify Person Attributes

	pr.person.verify or cr.person.verify

	Query Person UIN

	pr.person.read or cr.person.read

	Query Person List

	pr.person.read or cr.person.read

	Read document

	pr.document.read or cr.document.read

	UIN Management

	Generate UIN

	uin.generate

	Enrollment Services

	Create Enrollment

	enroll.write

	Read Enrollment

	enroll.read

	Update Enrollment

	enroll.write

	Partial Update Enrollment

	enroll.write

	Finalize Enrollment

	enroll.write

	Delete Enrollment

	enroll.write

	Find Enrollments

	enroll.read

	Send Buffer

	enroll.buf.write

	Get Buffer

	enroll.buf.read

	Population Registry Services

	Create Person

	pr.person.write

	Read Person

	pr.person.read

	Update Person

	pr.person.write

	Delete Person

	pr.person.write

	Merge Persons

	pr.person.write

	Create Identity

	pr.identity.write

	Read Identity

	pr.identity.read

	Update Identity

	pr.identity.write

	Partial Update Identity

	pr.identity.write

	Delete Identity

	pr.identity.write

	Set Identity Status

	pr.identity.write

	Define Reference

	pr.reference.write

	Read Reference

	pr.reference.read

	Read Galleries

	pr.gallery.read

	Read Gallery Content

	pr.gallery.read

	Biometrics

	Create Encounter

	abis.encounter.write

	Read Encounter

	abis.encounter.read

	Update Encounter

	abis.encounter.write

	Delete Encounter

	abis.encounter.write

	Merge Encounter

	abis.encounter.write

	Set Encounter Status

	abis.encounter.write

	Read Template

	abis.encounter.read

	Read Galleries

	abis.gallery.read

	Read Gallery content

	abis.gallery.read

	Identify

	abis.identify

	Verify

	abis.verify

	Credential Services (Work in progress)

	Create Credential Request

	cms.request.write

	Read Credential Request

	cms.request.read

	Update Credential Request

	cms.request.write

	Delete Credential Request

	cms.request.write

	Read Credential

	cms.credential.read

	Suspend Credential

	cms.credential.write

	Unsuspend Credential

	cms.credential.write

	Cancel Credential

	cms.credential.write

	ID Usage (Work in progress)

	Verify ID

	id.verify

	Identify

	id.identify

	Read Attributes

	id.read

	Read Attributes set

	id.set.read

3.3.4. REST Interface Implementation

The OpenAPI [https://swagger.io/docs/specification/authentication/] files
included in this document must be changed to:

	Define the security scheme [https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#securitySchemeObject].
This is done with the additional piece of code:

components:
 securitySchemes:
 BearerAuth:
 type: http
 scheme: bearer
 bearerFormat: JWT

	Apply the security scheme and define the scope (i.e. permission) for each service. Example:

paths:
 /yyy:
 get:
 security:
 - BearerAuth: [id.read] # List of scopes
 responses:
 '200':
 description: OK
 '401':
 description: Not authenticated (bad token)
 '403':
 description: Access token does not have the required scope

See the different YAML files provided in Technical Specifications.

3.4. Privacy by Design

Privacy by design is a founding principle of the OSIA initiative.

The OSIA API is designed to support the protection of private citizens’ Personal Identifiable Information (PII).

The protection of PII data is a central design concern for all identity based systems regardless of where these are based.

PII data does not recognize geographical boundaries; it moves across systems and jurisdictions.
Similarly, the OSIA initiative is not geographically limited. OSIA takes its strong reference
point from the European Union’s GDPR regulation because this is considered by many as a best
practice approach. GDPR anticipates the possible adverse consequences from the mobility of PII
whether inside or outside the EU.

The General Data Protection Regulation (GDPR) is quite recent. It was introduced across the EU in 2016,
before reaching its full legal effect in 2018. It is adopted by all EU governments and carries
direct regulatory and legal force for any organization handling Personal Identifiable Information (PII),
either in the EU or in connection with EU citizens or residents. Compliance failure in respect
of GDPR carries significant financial penalties, reflecting the rights of individuals and groups,
as well as the importance of the issue.

GDPR is not the only defined standard, but it is seen as a best practice one. It is exemplary approach
for the safeguarding of PII; but, it should also be seen as a safeguard for a system owner/operator’s
interests. It is a major driver for government leadership in Identity Management is to prevent identity fraud.

3.4.1. Privacy for end-to-end systems

For privacy the bigger goal is to protect PII across the full reach of ID systems.
The OSIA API is a fundamental part and principle of the building process, providing definitions
of how components are connected.

This is a part of a wider story. An end-to-end solution making use of the OSIA API should
address three specific areas of concern for PII.

3.4.1.1. Correct implementation of the API definition

PII data flows through systems. API based connectivity between functional components is by definition
a way of sharing information, which will focus mostly on PII. The OSIA API defines what
should happen between application endpoints involving OSIA framework components.
It defines content and a minimum acceptable security standard for implementation.

3.4.1.2. PII safeguards within the components connected by the APIs

The API concept is built around functional components: the sub-systems for Identity Management.

As well as the correct implementation or use of the appropriate API, a component should also
meet PII requirements while this is present within the component. Such internal component
design and PII behavior is the responsibility of the component supplier.

The customer architect responsible for an API connected solution should therefore ensure
that the internal logic of an individual component is itself GDPR compliant.
The API concept cannot itself provide any guarantee that components are designed with
the same or sufficient internal levels of PII safeguards. What the API can do is to
preserve this level of trust and prevent the creation of new vulnerabilities between these components.

3.4.1.3. The workflow connecting components in an OSIA enabled solution

OSIA provides a model for an open architecture. An end-to-end identity system may use some,
or all of the OSIA components. It may use additional components to move data through the system.
Wherever the system uses components to move data that are not covered by the OSIA framework
definition then these should support end-to-end security with the same objective of GDPR compliance.

3.4.2. PII actors

The GDPR approach provides simple definitions.

	PII is a very wide category of information. It can be a name, a photo, a biometric, an email
address, bank details, social media postings, medical data, and even an IP address;

	The PII data belongs to a Data Subject who is a natural person that might identified directly
or indirectly using the PII;

	The usage, rules, and means of processing PII are determined by a Data Controller
(e.g. the Government agency);

	The data is processed by a Data Processor.

When a government department acts as owner of an ID system then it is a Data Controller.
It may also act as the Data Processor if it operates this system ‘in house’.

However, in today’s commercial world the Data Controller is equally likely to delegate some processing
to a data center or to a business service for all or part of the system. In this case these delegated
parties are Data Processors, and they also subject to the PII considerations.

Suppliers of the systems purchased and commissioned by Data Controllers, and operated by
Data Processors are not directly subject to the regulation.

3.4.3. Data subject rights

A GDPR data subject has several rights that should be reflected throughout the wider ID systems architecture.

3.4.3.1. The right to be forgotten

A subject may ask for her data to be deleted.

Depending on the purpose and the authority of the system this right may be restricted or blocked,
however the deletion of non-essential PII data may be a requirement according to some local laws.
The Data Controller should be able to justify why specific items of PII need to be retained
against the subject’s wishes, and when there is no reason for retention then the automated
purging of unnecessary data is generally recommended.

An example impact of this for API usage is where an enrolment client holds enrollee data
until receiving a response via the API from the enrollment server to the effect that any
client stored data can be deleted. The Data Processor operating the client is responsible
to ensure this deletion is systematically applied. Typically this may be done with a
configuration in the component product used.

3.4.3.2. Privacy by design

Systems should be designed to limit data collection, retention and accessibility.

This applies equally to APIs as to the system components themselves. No more data should be
passed over an API than is required. A component passing or receiving data should consider
how to minimize what new PII it collects, shares, and stores. The Data Controller should
know by design what data is held and where; as well as which APIs are sharing what data.

An example of this principle for API usage can be where a credential management system
receives PII over an API for credential production, then deletes the PII once the document
is produced successfully. The system may limit its retained data to production audit data.
A credential management system with a different set of responsibilities defined by the Data
Controller may justify the retention of a wider set of PII, which might be replicated
elsewhere in the system. A subject might ask to know where this data sits. The Controller
should be able to tell the subject, and the Processor able to prove it.

3.4.3.3. Breach notifications

Supervisory powers vary globally. In the EU organizations have to notify their national
supervisory authority in the event of a discovered data breach involving PII.
They are given a 72 hour period to do this after becoming aware of the breach.
The purpose of this notice period is to allow the organization to determine the nature
and the impact of the data breach.

Data subjects have the right to be informed about data breaches involving their personal data.

By following the Privacy by Design approach, detection and data exposure can be assessed
more accurately and quickly. Data is typically in transit between sub-systems, then at rest
or in use within a given sub-system. When correctly implemented the OSIA API concept provides
assurance against breaches at the API in-transit level. Combined with the knowledge of what
data is stored, and where, this Privacy by Design approach assists in the detection of breaches.

At the time of GDPR’s introduction the biggest issuing facing most organizations was
not the implementation of new controls, but the discovery of where and what data was in
their possession. The made it very difficult to know if data was ever compromised.

3.4.3.4. Risk and impact assessments

Looking at systems overall an organization has to perform a privacy impact assessment.

This describes what PII is collected, and how this is maintained, protected, and shared.
This may be done as part of a wider ISO 27000 process including risk assessment,
but this is not mandatory.

Today most providers of components within the OSIA framework will provide such a privacy
impact assessment statement for their products, including the GDPR controls in that product.

Taken together with the OSIA API specification then these assessments can be compiled
to an overall statement of system PII compliance.

3.4.3.5. Consent

Systems that deal with identity as their core subject matter may not be legally required
to obtain consent for the capture and use of PII data. However, in this service-centric
world more and more transactional and contextual data is captured, so this should not be
assumed. If this data is to be collected then organizations have to obtain valid and
explicit consent from the individuals.

The organizations must also be able to prove that they have gotten consent, not forgetting
that in the EU individuals may withdraw their consent.

In the EU additional safeguards apply, where parental consent is required if personal data
is to be collected about children under the age of 16.

An API usually indicates that the use or status of data is changing, so it should always
be considered. Passing PII over an API requires that the consent covers the scope of this
data sharing.

An example of this situation might be where an enrolment system captures biometric data
to be loaded to a credential using an API. The Data Controller later decides that the
same captured data will be passed via a new API to a biometric matching system.
Both the Data Controller and Processor might find that they are processing this data
contrary to the principle of consent. If consent matters in this case then the introduction
of the new API may alert the user to a change of use. This is not to say that such changes
only happen where APIs are concerned, but the OSIA API framework does represent different
functions across Identity Management, and therefore indicates that consent may be a
relevant consideration.

3.4.3.6. Data portability

The portability of requirement was conceived for both transparency and commercial reasons.

PII held should be usable by the Data Subject upon request. For privacy it may be held
encrypted in the Data Processor system, but must be provided in a structured and commonly
useable format to the Data Subject under reasonable terms of access.

An example scenario might be where a Data Subject wishes to have a copy of a child’s birth
record in a printed format or a format recognized by a third party. The concept of data
portability may in some cases be implemented by a report service, or in some cases use an
OSIA API to support the retrieval of personal attribute data to meet this demand.

3.4.4. What should OSIA API implementors do to prepare for safe PII?

	Appoint someone as the organization’s own GDPR or PII data expert. Someone who understands
the Data Controller business requirements, and knows the technologies likely to be used for
data processing.

	GDPR is a good example of best practice in PII Management, but it is vital to understand
the current local regulatory environment. Local existing laws and regulations take
precedence unless subject to GDPR, and even then local laws may be stricter.

	Use the OSIA API specification to understand the security organization of functional systems
that might be needed and document an overall assessment of the PII privacy risk.
Pay particular attention to sensitive data, and to the aggregation of PII.

	Ensure that component suppliers understand and support the principles of good PII management,
or GDPR. Most suppliers provide a description of how this is enforced in their products or
systems. They may even provide a user manual and training for this function.

	Document the design and lifecycle of data in the end-to-end system. The OSIA API
Specification will help with this. It does not provide the full PII story, but it does
provide the basis for the parts between components that the customer or its systems
integrator will be responsible for.

	Consider the Data Subject consent requirements, based on the functions that subject
data will be subject to.

	If the role is Data Controller, but not Data Processor then ensure that the organization
used for Data Processing can understand and meet the guidelines for PII protection.

	Remember that good planning and execution are essential, but it might be asked to prove
correct operation. Systems logs and audit data should be available. This should include
API usage to indicate where data has been transferred.

4. OSIA Versions & Referencing

There will be a version for each interface.
Each interface can be referenced in tenders as follows:

OSIA - [interface name] v. [version number]

For instance below is the string to reference the Notification interface:

OSIA - Notification v. 1.0.0

Below is the complete list of available interfaces with related version to date:

	OSIA - Notification - v. 4.0.0

	OSIA - Data Access - v. 4.0.0

	OSIA - UIN Management - v. 4.0.0

	OSIA - Enrollment Services - v. 4.0.0

	OSIA - Identity Management - v. 4.0.0

	OSIA - Population Registry Services - v. 4.0.0

	OSIA - Biometrics - v. 4.0.0

	OSIA - Credential Services - v. 4.0.0

	OSIA - ID Usage - v. 4.0.0

This document proposes as well a set of interfaces that could be used by each component (non-prescriptive).

As a consequence, it is possible to reference directly that set of interfaces bundled with a given component.
It is possible to reference the bundle of these interfaces as follows:

OSIA – [component name] v. [version number]

For instance for Civil Registry (CR) OSIA proposes the following set of interfaces:

	OSIA - Notifications - v. 4.0.0

	OSIA - Data Access - v. 4.0.0

Below is the string to reference this set of interfaces linked to CR:

OSIA – CR v. 4.0.0

5. Interfaces

The chapter below describes the specifications of all OSIA interfaces and related services.

5.1. Notification

See Notification for the technical details of this interface.

The subscription & notification process is managed by a middleware and is described
in the following diagram:

[image: !include "skin.iwsd" hide footbox participant "Emitter" as PR participant "Notification\nEngine" as N participant "Subscriber" as CR note over PR,N: First step is to create the topic PR -> N: create_topic(name) activate PR activate N N --> PR: uuid deactivate N deactivate PR note over N,CR: Then a system can subscribe for events published on that topic CR -> N: subscribe(topic,URL) activate CR activate N N --> CR: id deactivate CR deactivate N ... later ... note over N,CR: confirm the address before the subscription is active N -> CR: notify(token) activate N activate CR CR -> N: subscribe_CB(token) activate N #FFBBB N --> CR: ok deactivate N CR --> N: ok deactivate CR deactivate N note over PR,CR: it is now possible to publish notification PR -> N: publish(message) activate PR activate N N -> N: store N --> PR: ok deactivate PR ... loop subscriptions N -> CR: subscribe_CB(message) activate CR CR --> N: ok deactivate CR end deactivate N]

Fig. 5.1 Subscription & Notification Process

5.1.1. Services

5.1.1.1. For the Subscriber

	
subscribe(topic, URL)

	Subscribe a URL to receive notifications sent to one topic

Authorization: notif.sub.write

	Parameters

	
	topic (str) – Topic

	URL (str) – URL to be called when a notification is available

	Returns

	a subscription ID

This service is synchronous.

	
listSubscriptions()

	Get all subscriptions

Authorization: notif.sub.read

	Parameters

	URL (str) – URL to be called when a notification is available

	Returns

	a subscription ID

This service is synchronous.

	
unsubscribe(id)

	Unsubscribe a URL from the list of receiver for one topic

Authorization: notif.sub.write

	Parameters

	id (str) – Subscription ID

	Returns

	bool

This service is synchronous.

	
confirm(token)

	Used to confirm that the URL used during the subscription is valid

Authorization: notif.sub.write

	Parameters

	token (str) – A token send through the URL.

	Returns

	bool

This service is synchronous.

5.1.1.2. For the Publisher

	
createTopic(topic)

	Create a new topic. This is required before an event can be sent to it.

Authorization: notif.topic.write

	Parameters

	topic (str) – Topic

	Returns

	N/A

This service is synchronous.

	
listTopics()

	Get the list of all existing topics.

Authorization: notif.topic.read

	Returns

	N/A

This service is synchronous.

	
deleteTopic(topic)

	Delete a topic.

Authorization: notif.topic.write

	Parameters

	topic (str) – Topic

	Returns

	N/A

This service is synchronous.

	
publish(topic, subject, message)

	Notify of a new event all systems that subscribed to this topic

Authorization: notif.topic.publish

	Parameters

	
	topic (str) – Topic

	subject (str) – The subject of the message

	message (str) – The message itself (a string buffer)

	Returns

	N/A

This service is asynchronous (systems that subscribed on this topic are notified asynchronously).

5.1.2. Dictionaries

As an example, below there is a list of events that each component might handle.

Table 5.1 Event Type

	Event Type

	Emitted by CR

	Emitted by PR

	Live birth

	✔

	

	Death

	✔

	

	Fœtal Death

	✔

	

	Marriage

	✔

	

	Divorce

	✔

	

	Annulment

	✔

	

	Separation, judicial

	✔

	

	Adoption

	✔

	

	Legitimation

	✔

	

	Recognition

	✔

	

	Change of name

	✔

	

	Change of gender

	✔

	

	New person

	
	✔

	Duplicate person

	✔

	✔

5.2. Data Access

See Data Access for the technical details of this interface.

5.2.1. Services

	
readPersonAttributes(UIN, names)

	Read person attributes.

Authorization: pr.person.read or cr.person.read

	Parameters

	
	UIN (str) – The person’s UIN

	names (list[str]) – The names of the attributes requested

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can request person's attributes from PR CR -> PR: readPersonAttributes(UIN,[names]) PR -->> CR: attributes note over CR,PR: PR can request person's attributes from CR PR -> CR: readPersonAttributes(UIN,[names]) CR -->> PR: attributes]

Fig. 5.2 readPersonAttributes Sequence Diagram

	
matchPersonAttributes(UIN, attributes)

	Match person attributes. This service is used to check the value of attributes without exposing private data.
The implementation can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: pr.person.match or cr.person.match

	Parameters

	
	UIN (str) – The person’s UIN

	attributes (list[(str,str)]) – The attributes to match. Each attribute is described with its name and the expected value

	Returns

	If all attributes match, a Yes is returned. If one attribute does not match, a No is returned along with a list of (name,reason) for each non-matching attribute.

This service is synchronous. It can be used to match attributes in CR or in PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can match person's attributes in PR CR -> PR: matchPersonAttributes(UIN,[attributes]) PR -->> CR: Y/N+reasons note over CR,PR: PR can match person's attributes in CR PR -> CR: matchPersonAttributes(UIN,[attributes]) CR -->> PR: Y/N+reasons]

Fig. 5.3 matchPersonAttributes Sequence Diagram

	
verifyPersonAttributes(UIN, expressions)

	Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s attributes
without exposing private data
The implementation can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: pr.person.verify or cr.person.verify

	Parameters

	
	UIN (str) – The person’s UIN

	expressions (list[(str,str,str)]) – The expressions to evaluate. Each expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=) and the attribute value

	Returns

	A Yes if all expressions are true, a No if one expression is false, a Unknown if To be defined

This service is synchronous. It can be used to verify attributes in CR or in PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can verify person's attributes in PR CR -> PR: verifyPersonAttributes(UIN,[expressions]) PR -->> CR: Y/N/U note over CR,PR: PR can verify person's attributes in CR PR -> CR: verifyPersonAttributes(UIN,[expressions]) CR -->> PR: Y/N/U]

Fig. 5.4 verifyPersonAttributes Sequence Diagram

	
queryPersonUIN(attributes)

	Query the persons by a set of attributes. This service is used when the UIN is unknown.
The implementation can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: pr.person.read or cr.person.read

	Parameters

	attributes (list[(str,str)]) – The attributes to be used to find UIN. Each attribute is described with its name and its value

	Returns

	a list of matching UIN

This service is synchronous. It can be used to get the UIN of a person.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can get UIN from PR CR -> PR: queryPersonUIN([attributes]) PR -->> CR: [UIN] note over CR,PR: PR can get UIN from CR PR -> CR: queryPersonUIN([attributes]) CR -->> PR: [UIN]]

Fig. 5.5 queryPersonUIN Sequence Diagram

	
queryPersonList(attributes, names)

	Query the persons by a list of attributes and their values.
This service is proposed as an optimization of a sequence of calls to
queryPersonUIN() and readPersonAttributes().

Authorization: pr.person.read or cr.person.read

	Parameters

	
	attributes (list[(str,str)]) – The attributes to be used to find the persons. Each attribute is described with its name and its value

	names (list[str]) – The names of the attributes requested

	Returns

	a list of lists of pairs (name,value). In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can request person's attributes from PR CR -> PR: queryPersonList([attributes],[names]) PR -->> CR: [attributes] note over CR,PR: PR can request person's attributes from CR PR -> CR: queryPersonList([attributes],[names]) CR -->> PR: [attributes]]

Fig. 5.6 queryPersonList Sequence Diagram

	
readDocument(UINs, documentType, format)

	Read in a selected format (PDF, image, …) a document such as a marriage certificate.

Authorization: pr.document.read or cr.document.read

	Parameters

	
	UIN (list[str]) – The list of UINs for the persons concerned by the document

	documentType (str) – The type of document (birth certificate, etc.)

	format (str) – The format of the returned/requested document

	Returns

	The list of the requested documents

This service is synchronous. It can be used to get the documents for a person.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can get a document from PR CR -> PR: readDocument([UIN],documentType,format) PR -->> CR: [documents] note over CR,PR: PR can get a document from CR PR -> CR: readDocument([UIN],documentType,format) CR -->> PR: [documents]]

Fig. 5.7 readDocument Sequence Diagram

5.2.2. Dictionaries

As an example, below there is a list of attributes/documents that each component might handle.

Table 5.2 Person Attributes

	Attribute Name

	In CR

	In PR

	Description

	UIN

	✔

	✔

	

	first name

	✔

	✔

	

	last name

	✔

	✔

	

	spouse name

	✔

	✔

	

	date of birth

	✔

	✔

	

	place of birth

	✔

	✔

	

	gender

	✔

	✔

	

	date of death

	✔

	✔

	

	place of death

	✔

	
	

	reason of death

	✔

	
	

	status

	
	✔

	Example: missing, wanted, dead, etc.

Table 5.3 Certificate Attributes

	Attribute Name

	In CR

	In PR

	Description

	officer name

	✔

	
	

	number

	✔

	
	

	date

	✔

	
	

	place

	✔

	
	

	type

	✔

	
	

Table 5.4 Union Attributes

	Attribute Name

	In CR

	In PR

	Description

	date of union

	✔

	
	

	place of union

	✔

	
	

	conjoint1 UIN

	✔

	
	

	conjoint2 UIN

	✔

	
	

	date of divorce

	✔

	
	

Table 5.5 Filiation Attributes

	Attribute Name

	In CR

	In PR

	Description

	parent1 UIN

	✔

	
	

	parent2 UIN

	✔

	
	

Table 5.6 Document Type

	Document Type

	Description

	birth certificate

	To be completed

	death certificate

	To be completed

	marriage certificate

	To be completed

5.3. UIN Management

See UIN Management for the technical details of this interface.

5.3.1. Services

	
generateUIN(attributes)

	Generate a new UIN.

Authorization: uin.generate

	Parameters

	attributes (list[(str,str)]) – A list of pair (attribute name, value) that can be used to allocate a new UIN

	Returns

	a new UIN or an error if the generation is not possible

This service is synchronous.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR participant "UIN Generator" as UIN note over CR,UIN: CR can request a new UIN CR -> UIN: generateUIN([attributes]) UIN -->> CR: UIN note over PR,UIN: PR can request a new UIN PR -> UIN: generateUIN([attributes]) UIN -->> PR: UIN]

Fig. 5.8 generateUIN Sequence Diagram

5.4. Enrollment Services

This interface describes enrollment services in the context of an identity system. It is based on
the following principles:

	When enrollment is done in one step, the CreateEnrollment can contain all the data and an additional flag (finalize) to indicate all data was collected.

	During the process, enrollment structure can be updated. Only the data that changed need to be transferred. Data not included is left unchanged on the server. In the following example, the biographic data is not changed.

	Images can be passed by value or reference. When passed by value, they are base64-encoded.

	Existing standards are used whenever possible, for instance preferred image format for biometric data is ISO-19794.

About documents

Adding one document or deleting one document implies that:

	The full document list is read (ReadEnrollment)

	The document list is altered locally to the enrollment client (add or delete)

	The full document list is sent back using the UpdateEnrollment service

5.4.1. Services

	
createEnrollment(enrollmentID, enrollmentTypeId, enrollmentFlags, requestData, biometricData, biographicData, documentData, finalize, transactionID)

	Insert a new enrollment.

Authorization: enroll.write

	Parameters

	
	enrollmentID (str) – The ID of the enrollment. If the enrollment already exists for the ID an error is returned.

	enrollmentTypeId (str) – The enrollment type ID of the enrollment.

	enrollmentFlags (dict) – The enrollment custom flags.

	requestData (dict) – The enrollment data related to the enrollment itself.

	biometricData (list) – The enrollment biometric data.

	biographicData (dict) – The enrollment biographic data.

	documentData (list) – The enrollment biometric data.

	finalize (str) – Flag to indicate that data was collected.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error and in case of success the enrollment ID.

	
readEnrollment(enrollmentID, attributes, transactionID)

	Retrieve the attributes of an enrollment.

Authorization: enroll.read

	Parameters

	
	enrollmentID (str) – The ID of the enrollment.

	attributes (set) – The (optional) set of required attributes to retrieve.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error and in case of success the enrollment data.

	
updateEnrollment(enrollmentID, enrollmentTypeId, enrollmentFlags, requestData, biometricData, biographicData, documentData, finalize, transactionID)

	Update an enrollment.

Authorization: enroll.write

	Parameters

	
	enrollmentID (str) – The ID of the enrollment. If the enrollment already exists for the ID an error is returned.

	enrollmentTypeId (str) – The enrollment type ID of the enrollment.

	enrollmentFlags (dict) – The enrollment custom flags.

	requestData (dict) – The enrollment data related to the enrollment itself.

	biometricData (list) – The enrollment biometric data, this can be partial data.

	biographicData (dict) – The enrollment biographic data.

	documentData (list) – The enrollment biometric data, this can be partial data.

	finalize (str) – Flag to indicate that data was collected.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
partialupdateEnrollment(enrollmentID, enrollmentTypeId, enrollmentFlags, requestData, biometricData, biographicData, documentData, finalize, transactionID)

	Update part of an enrollment. Not all attributes are mandatory. The payload
is defined as per RFC 7396 [https://tools.ietf.org/html/rfc7396.html].

Authorization: enroll.write

	Parameters

	
	enrollmentID (str) – The ID of the enrollment. If the enrollment already exists for the ID an error is returned.

	enrollmentTypeId (str) – The enrollment type ID of the enrollment.

	enrollmentFlags (dict) – The enrollment custom flags.

	requestData (dict) – The enrollment data related to the enrollment itself.

	biometricData (list) – The enrollment biometric data, this can be partial data.

	biographicData (dict) – The enrollment biographic data.

	documentData (list) – The enrollment biometric data, this can be partial data.

	finalize (str) – Flag to indicate that data was collected.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
finalizeEnrollment(enrollmentID, transactionID)

	When all the enrollment steps are done, the enrollment client indicates to the enrollment server that all data has been collected and that any further processing can be triggered.

Authorization: enroll.write

	Parameters

	
	enrollmentID (str) – The ID of the enrollment.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
deleteEnrollment(enrollmentID, transactionID)

	Deletes the enrollment

Authorization: enroll.write

	Parameters

	
	enrollmentID (str) – The ID of the enrollment.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
findEnrollments(expressions, transactionID)

	Retrieve a list of enrollments which match passed in search criteria.

Authorization: enroll.read

	Parameters

	
	expressions (list[(str,str,str)]) – The expressions to evaluate. Each expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=) and the attribute value

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error and in case of success the matching enrollment list.

	
sendBuffer(enrollmentId, data)

	This service is used to send separately the buffers of the images. Buffers can be sent any time from the enrollment client prior to the create or update.

Authorization: enroll.buf.write

	Parameters

	
	enrollmentID (str) – The ID of the enrollment.

	data (image) – The image of the request.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error and in case of success the buffer ID.

	
getBuffer(enrollmentId, bufferId)

	This service is used to get images of buffers.

Authorization: enroll.buf.read

	Parameters

	
	enrollmentID (str) – The ID of the enrollment.

	bufferID (str) – The ID of the buffer.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error and in case of success the image of the buffer.

5.4.2. Attributes

The “attributes” parameter used in “read” calls is used to provide a set of
identifiers that limit the amount of data that is returned.
It is often the case that the whole data set is not required, but instead,
a subset of that data.
Where possible, existing standards based identifiers should be used for the
attributes to retrieve.

E.g. For surname/familyname, use OID 2.5.4.4 or id-at-surname.

Some calls may require new attributes to be defined. E.g. when
retrieving biometric data, the caller may only want the meta data about
that biometric, rather than the actual biometric data.

5.4.3. Transaction ID

The transactionID is a string provided by the client application to identity
the request being submitted. It can be used for tracing and debugging.

5.4.4. Data Model

Table 5.7 Enrolment Data Model

	Type

	Description

	Example

	Enrollment

	Set of person data which are captured.

	TBD

	Document Data

	The document data of the enrollment.

	TBD

	Biometric Data

	Digital representation of biometric characteristics.
All images can be passed by value (image buffer is in the request) or by reference (the address of the
image is in the request).
All images are compliant with ISO 19794. ISO 19794 allows multiple encoding and supports additional
metadata specific to fingerprint, palmprint, portrait or iris.

	fingerprint, portrait, iris

	Biographic Data

	a dictionary (list of names and values) giving the biographic data of interest for the biometric services.

	TBD

	Enrollment Flags

	a dictionary (list of names and values) for custom flags.

	TBD

	Request Data

	a dictionary (list of names and values) for data related to the enrollment itself (the operator, the station, the data, etc.).

	TBD

	Attributes

	a dictionary (list of names and values or range of values) describing the attributes to return.
Attributes can apply on biographic data, document data, request data, or enrollment flag data.

	TBD

	Expressions

	Each expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=, !=) and the attribute value

	TBD

[image: !include "skin.iwsd" class Enrollment { string enrollmentID; } class BiographicData { string field1; int field2; date field3; ... } Enrollment o- BiographicData class BiometricData { byte[] image; URL imageRef; } Enrollment o-- "*" BiometricData class DocumentData { int documentType; } Enrollment o-- "*" DocumentData class DocumentPart { byte[] image; URL imageRef; } DocumentData o-- "*" DocumentPart class RequestData { string field1; int field2; date field3; ... } Enrollment o- RequestData class EnrollmentFlagsData { string field1; int field2; date field3; ... } Enrollment o- EnrollmentFlagsData]

Fig. 5.9 Enrollment Data Model

5.5. Population Registry Services

This interface describes services to manage a registry of the population in the context of an identity system. It is based on
the following principles:

	It supports a history of identities, meaning that a person has one identity and this identity
has a history.

	Images can be passed by value or reference. When passed by value, they are base64-encoded.

	Existing standards are used whenever possible.

	This interface is complementary to the data access interface. The data access interface is used
to query the persons and uses the reference identity to return attributes.

	The population registry can store the biometric data or can rely on the ABIS subsystem to do it.
The preferred solution, for a clean separation of data of different nature and by application
of GDPR principles, is to put the biometric data only in the ABIS. Yet many existing systems
store biometric data with the biographic data and this specification gives the flexibility to do it.

See Population Registry Management for the technical details of this interface.

5.5.1. Services

	
createPerson(personID, personData, transactionID)

	Create a new person.

Authorization: pr.person.write

	Parameters

	
	personID (str) – The ID of the person. If the person already exists for the ID an error is returned.

	personData – The person attributes.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
readPerson(personID, transactionID)

	Read the attributes of a person.

Authorization: pr.person.read

	Parameters

	
	personID (str) – The ID of the person.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error and in case of success the person data.

	
updatePerson(personID, personData, transactionID)

	Update a person.

Authorization: pr.person.write

	Parameters

	
	personID (str) – The ID of the person.

	personData (dict) – The person data.

	Returns

	a status indicating success or error.

	
deletePerson(personID, transactionID)

	Delete a person and all its identities.

Authorization: pr.person.write

	Parameters

	
	personID (str) – The ID of the person.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
mergePerson(personID1, personID2, transactionID)

	Merge two person records into a single one. Identity ID are preserved and in case of duplicates
an error is returned and no changes are done.
The reference identity is not changed.

Authorization: pr.person.write

	Parameters

	
	personID1 (str) – The ID of the person that will receive new identities

	personID2 (str) – The ID of the person that will give its identities. It will be deleted if the move of all identities is successful.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority.

	Returns

	a status indicating success or error.

	
createIdentity(personID, identityID, identity, transactionID)

	Create a new identity in a person. If no identityID is provided, a new one is generated. If identityID
is provided, it is checked for uniqueness and used for the identity if unique.
An error is returned if the provided identityID is not unique.

Authorization: pr.identity.write

	Parameters

	
	personID (str) – The ID of the person.

	identityID (str) – The ID of the identity.

	identity – The new identity data.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
readIdentity(personID, identityID, transactionID)

	Read one or all the identities of one person.

Authorization: pr.identity.read

	Parameters

	
	personID (str) – The ID of the person.

	identityID (str) – The ID of the identity. If not provided, all identities are returned.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error, and in case of success a list of identities.

	
updateIdentity(personID, identityID, identity, transactionID)

	Update an identity. An identity can be updated only in the status claimed.

Authorization: pr.identity.write

	Parameters

	
	personID (str) – The ID of the person.

	identityID (str) – The ID of the identity.

	identity – The identity data.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
partialUpdateIdentity(personID, identityID, identity, transactionID)

	Update part of an identity. Not all attributes are mandatory. The payload
is defined as per RFC 7396 [https://tools.ietf.org/html/rfc7396.html].
An identity can be updated only in the status claimed.

Authorization: pr.identity.write

	Parameters

	
	personID (str) – The ID of the person.

	identityID (str) – The ID of the identity.

	identity – Part of the identity data.

	Returns

	a status indicating success or error.

	
deleteIdentity(personID, identityID, transactionID)

	Delete an identity.

Authorization: pr.identity.write

	Parameters

	
	personID (str) – The ID of the person.

	identityID (str) – The ID of the identity.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
setIdentityStatus(personID, identityID, status, transactionID)

	Set an identity status.

Authorization: pr.identity.write

	Parameters

	
	personID (str) – The ID of the person.

	identityID (str) – The ID of the identity.

	status (str) – The new status of the identity.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
defineReference(personID, identityID, transactionID)

	Define the reference identity of one person.

Authorization: pr.reference.write

	Parameters

	
	personID (str) – The ID of the person.

	identityID (str) – The ID of the identity being now the reference.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
readReference(personID, transactionID)

	Read the reference identity of one person.

Authorization: pr.reference.read

	Parameters

	
	personID (str) – The ID of the person.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error and in case of success the reference identity.

	
readGalleries(transactionID)

	Read the ID of all the galleries.

Authorization: pr.gallery.read

	Parameters

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error, and in case of success a list of gallery ID.

	
readGalleryContent(galleryID, transactionID)

	Read the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: pr.gallery.read

	Parameters

	
	galleryID (str) – Gallery whose content will be returned.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error. In case of success a list of person/identity IDs.

5.5.2. Data Model

Table 5.8 Population Registry Data Model

	Type

	Description

	Example

	Gallery

	A group of persons related by a common purpose, designation, or status.
A person can belong to multiple galleries.

	VIP, Wanted, etc.

	Person

	Person who is known to an identity assurance system. A person record has:

	a status, such as active or inactive, defining the status of the record
(the record can be excluded from queries based on this status),

	a physical status, such as alive or dead, defining the status of the person,

	a set of identities, keeping track of all identity data submitted by the person during
the life of the system,

	a reference identity, i.e. a consolidated view of all the identities
defining the current correct identity of the person. It corresponds usually to the last
valid identity but it can also include data from previous identities.

	N/A

	Identity

	The attributes describing an identity of a person.
An identity has a status such as: claimed (identity not yet validated), valid
(the identity is valid), invalid (the identity is not valid), revoked (the identity
cannot be used any longer).

An identity can be updated only in the status claimed.

The allowed transitions for the status are represented below:

[image: [*] --> claimed claimed --> valid claimed -->invalid valid --> revoked]

The attributes are separated into two categories: the biographic data and the contextual data.

	N/A

	Biographic Data

	A dictionary (list of names and values) giving the biographic data of the identity

	firstName, lastName, dateOfBirth, etc.

	Contextual Data

	A dictionary (list of names and values) attached to the context of establishing the identity

	operatorName, enrollmentDate, etc.

	Biometric Data

	Digital representation of biometric characteristics.
All images can be passed by value (image buffer is in the request) or by reference (the address of the
image is in the request).
All images are compliant with ISO 19794. ISO 19794 allows multiple encoding and supports additional
metadata specific to fingerprint, palmprint, portrait or iris.

	fingerprint, portrait, iris

	Document

	The document data (images) attached to the identity and used to validate it.

	Birth certificate, invoice

[image: class Gallery { string galleryID; } class Person { string personID; enum status: Active | Inactive; enum physicalStatus: Alive | Dead; } class Identity { string identityID; enum status: Claimed | Valid | Invalid | Revoked; byte[] clientData; } Gallery "*" -- "*" Identity Person -- "*" Identity: "identities" Person -- Identity: "reference" class BiographicData { string firstName; string lastName; date dateOfBirth; date dateOfDeath; string addressLine1; ... } Identity o- BiographicData class ContextualData { string field1; int field2; date field3; ... } ContextualData -o Identity class BiometricData { string type string subType byte[] image URL imageRef ... } Identity "1" -- "0..*" BiometricData class Document { enum type: Doc1 | Doc2 | Signature | etc; string instance; } class DocumentPart { int[] pages; byte[] data; URL dataRef; int width; int height; date captureDate; string captureDevice; string format; } Identity "1" -- "0..*" Document Document "1" -- "1..*" DocumentPart]

Fig. 5.10 Population Registry Data Model

5.6. Biometrics

This interface describes biometric services in the context of an identity system. It is based on
the following principles:

	It supports only multi-encounter model, meaning that an identity can have multiple set of biometric data,
one for each encounter.

	It does not expose templates (only images) for CRUD services, with one exception to support
the use case of credentials with biometrics.

	Images can be passed by value or reference. When passed by value, they are base64-encoded.

	Existing standards are used whenever possible, for instance preferred image format for biometric data is ISO-19794.

About synchronous and asynchronous processing

Some services can be very slow depending on the algorithm used, the system workload, etc.
Services are described so that:

	If possible, the answer is provided synchronously in the response of the service.

	If not possible for some reason, a status PENDING is returned and the answer, when available, is
pushed to a callback provided by the client.

If no callback is provided, this indicates that the client wants a synchronous answer, whatever the time it takes.

If a callback is provided, the server will decide if the processing is done synchronously or asynchronously.

See Biometrics for the technical details of this interface.

5.6.1. Services

	
createEncounter(personID, encounterID, galleryID, biographicData, contextualData, biometricData, clientData, callback, transactionID, options)

	Create a new encounter. No identify is performed.

Authorization: abis.encounter.write

	Parameters

	
	personID (str) – The person ID. This is optional and will be generated if not provided

	encounterID (str) – The encounter ID. This is optional and will be generated if not provided

	galleryID (list(str)) – the gallery ID to which this encounter belongs. A minimum of one gallery must be provided

	biographicData (dict) – The biographic data (ex: name, date of birth, gender, etc.)

	contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

	biometricData (list) – the biometric data (images)

	clientData (bytes) – additional data not interpreted by the server but stored as is and returned
when encounter data is requested.

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority, algorithm.

	Returns

	a status indicating success, error, or pending operation.
In case of success, the person ID and the encounter ID are returned.
In case of pending operation, the result will be sent later.

	
readEncounter(personID, encounterID, callback, transactionID, options)

	Read the data of an encounter.

Authorization: abis.encounter.read

	Parameters

	
	personID (str) – The person ID

	encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the person are returned.

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority.

	Returns

	a status indicating success, error, or pending operation.
In case of success, the encounter data is returned.
In case of pending operation, the result will be sent later.

	
updateEncounter(personID, encounterID, galleryID, biographicData, contextualData, biometricData, callback, transactionID, options)

	Update an encounter.

Authorization: abis.encounter.write

	Parameters

	
	personID (str) – The person ID

	encounterID (str) – The encounter ID

	galleryID (list(str)) – the gallery ID to which this encounter belongs. A minimum of one gallery must be provided

	biographicData (dict) – The biographic data (ex: name, date of birth, gender, etc.)

	contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

	biometricData (list) – the biometric data (images)

	clientData (bytes) – additional data not interpreted by the server but stored as is and returned
when encounter data is requested.

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority, algorithm.

	Returns

	a status indicating success, error, or pending operation.
In case of success, the person ID and the encounter ID are returned.
In case of pending operation, the result will be sent later.

	
deleteEncounter(personID, encounterID, callback, transactionID, options)

	Delete an encounter.

Authorization: abis.encounter.write

	Parameters

	
	personID (str) – The person ID

	encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the person are deleted.

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority.

	Returns

	a status indicating success, error, or pending operation.
In case of pending operation, the operation status will be sent later.

	
mergeEncounter(personID1, personID2, callback, transactionID, options)

	Merge two sets of encounters into a single one. Encounter ID are preserved and in case of duplicates
an error is returned and no changes are done.

Authorization: abis.encounter.write

	Parameters

	
	personID1 (str) – The ID of the person that will receive new encounters

	personID2 (str) – The ID of the person that will give its encounters

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority.

	Returns

	a status indicating success, error, or pending operation.
In case of pending operation, the result will be sent later.

	
readTemplate(personID, encounterID, biometricType, biometricSubType, templateFormat, qualityFormat, callback, transactionID, options)

	Read the generated template.

Authorization: abis.encounter.read

	Parameters

	
	personID (str) – The person ID

	encounterID (str) – The encounter ID.

	biometricType (str) – The type of biometrics to consider (optional)

	biometricSubType (str) – The subtype of biometrics to consider (optional)

	templateFormat (str) – the format of the template to return (optional)

	qualityFormat (str) – the format of the quality to return (optional)

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority.

	Returns

	a status indicating success, error, or pending operation.
In case of success, a list of template data is returned.
In case of pending operation, the result will be sent later.

	
setEncounterStatus(personID, encounterID, status, transactionID)

	Set an encounter status.

Authorization: abis.encounter.write

	Parameters

	
	personID (str) – The ID of the person.

	encounterID (str) – The encounter ID.

	status (str) – The new status of the encounter.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
readGalleries(callback, transactionID, options)

	Read the ID of all the galleries.

Authorization: abis.gallery.read

	Parameters

	
	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority.

	Returns

	a status indicating success, error, or pending operation.
A list of gallery ID is returned, either synchronously or using the callback.

	
readGalleryContent(galleryID, callback, transactionID, options)

	Read the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: abis.gallery.read

	Parameters

	
	galleryID (str) – Gallery whose content will be returned.

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority.

	Returns

	a status indicating success, error, or pending operation.
A list of persons/encounters is returned, either synchronously or using the callback.

	
identify(galleryID, filter, biometricData, callback, transactionID, options)

	Identify a person using biometrics data and filters on biographic or contextual data. This may include multiple
operations, including manual operations.

Authorization: abis.identify

	Parameters

	
	galleryID (str) – Search only in this gallery.

	filter (dict) – The input data (filters and biometric data)

	biometricData – the biometric data.

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A list of candidates is returned, either synchronously or using the callback.

	
identify(galleryID, filter, personID, callback, transactionID, options)

	Identify a person using biometrics data of a person existing in the system and filters on biographic or
contextual data. This may include multiple operations, including manual operations.

Authorization: abis.verify

	Parameters

	
	galleryID (str) – Search only in this gallery.

	filter (dict) – The input data (filters and biometric data)

	personID – the person ID

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A list of candidates is returned, either synchronously or using the callback.

	
verify(galleryID, personID, biometricData, callback, transactionID, options)

	Verify an identity using biometrics data.

Authorization: To be defined

	Parameters

	
	galleryID (str) – Search only in this gallery. If the person does not belong to this gallery,
an error is returned.

	personID (str) – The person ID

	biometricData – The biometric data

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority,
threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A status (boolean) is returned, either synchronously or using the callback. Optionally, details
about the matching result can be provided like the score per biometric and per encounter.

	
verify(biometricData1, biometricData2, callback, transactionID, options)

	Verify that two sets of biometrics data correspond to the same person.

Authorization: To be defined

	Parameters

	
	biometricData1 – The first set of biometric data

	biometricData2 – The second set of biometric data

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority,
threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A status (boolean) is returned, either synchronously or using the callback. Optionally, details
about the matching result can be provided like the score per the biometric.

5.6.2. Options

Table 5.9 Biometric Services Options

	Name

	Description

	priority

	Priority of the request. Values range from 0 to 9

	maxNbCand

	The maximum number of candidates to return.

	threshold

	The threshold to apply on the score to filter the candidates during an identification,
authentication or verification.

	algorithm

	Specify the type of algorithm to be used.

	accuracyLevel

	Specify the accuracy expected of the request. This is to support different use cases, when
different behavior of the ABIS is expected (response time, accuracy, consolidation/fusion, etc.).

5.6.3. Data Model

Table 5.10 Biometric Data Model

	Type

	Description

	Example

	Gallery

	A group of persons related by a common purpose, designation, or status.
A person can belong to multiple galleries.

	TBD

	Person

	Person who is known to an identity assurance system.

	TBD

	Encounter

	Event in which the client application interacts with a person resulting in data being
collected during or about the encounter. An encounter is characterized by an identifier and a type
(also called purpose in some context).

An encounter has a status indicating if this encounter is used in the biometric searches. Allowed values
are active or inactive.

	TBD

	Biographic Data

	a dictionary (list of names and values) giving the biographic data of interest for the biometric services.

	TBD

	Filters

	a dictionary (list of names and values or range of values) describing the filters during a search.
Filters can apply on biographic data, contextual data or encounter type.

	TBD

	Biometric Data

	Digital representation of biometric characteristics.
All images can be passed by value (image buffer is in the request) or by reference (the address of the
image is in the request).
All images are compliant with ISO 19794. ISO 19794 allows multiple encoding and supports additional
metadata specific to fingerprint, palmprint, portrait or iris.

	fingerprint, portrait, iris

	Candidate

	Information about a candidate found during an identification

	TBD

	CandidateScore

	Detailed information about a candidate found during an identification. It includes
the score for the biometrics used. It can also be extended with proprietary information to better describe
the matching result (for instance: rotation needed to align the probe and the candidate)

	TBD

	Template

	A computed buffer corresponding to a biometric and allowing the comparison of biometrics.
A template has a format that can be a standard format or a vendor-specific format.

	N/A

[image: !include "skin.iwsd" class Gallery { string galleryID; } class Person { string personID; } class Encounter { string encounterID; string status; string encounterType; byte[] clientData; } Encounter "*" -- "*" Gallery Person o-- "*" Encounter class BiographicData { string field1; int field2; date field3; ... } Encounter o- BiographicData class ContextualData { string field1; int field2; date field3; ... } ContextualData -o Encounter class Filters { string filter1; int filter2Min; int filter2Max; date filter3Min; date filter3Max; ... } class BiometricData { byte[] image; URL imageRef; } Encounter o-- "*" BiometricData class Template { byte[] buffer; string format; } BiometricData -- Template class Candidate { int rank; int score; } Candidate . Person class CandidateScore { float score; string encounterID; enum biometricType; enum biometricSubType; ... } Candidate -- "*" CandidateScore]

Fig. 5.11 Biometric Data Model

5.7. Credential Services

This interface describes services to manage credentials and credential
requests in the context of an identity system.

5.7.1. Services

	
createCredentialRequest(personID, credentialProfileID, additionalData, transactionID)

	Request issuance of a secure credential.

Authorization: cms.request.write

	Parameters

	
	personID (str) – The ID of the person.

	credentialProfileID (str) – The ID of the credential profile to issue to the person.

	additionalData (dict) – Additional data relating to the requested credential profile,
e.g. credential lifetime if overriding default, delivery addresses, etc.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error. In the case of success, a credential request identifier.

	
readCredentialRequest(credentialRequestID, attributes, transactionID)

	Retrieve the data/status of a credential request.

Authorization: cms.request.read

	Parameters

	
	credentialRequestID (str) – The ID of the credential request.

	attributes (set) – The (optional) set of required attributes to retrieve.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, and in case of success the issuance data/status.

	
updateCredentialRequest(credentialRequestID, additionalData, transactionID)

	Update the requested issuance of a secure credential.

Authorization: cms.request.write

	Parameters

	
	credentialRequestID (str) – The ID of the credential request.

	transactionID (string) – The client generated transactionID.

	additionalData (dict) – Additional data relating to the requested credential profile,
e.g. credential lifetime if overriding default, delivery addresses, etc.

	Returns

	a status indicating success or error.

	
deleteCredentialRequest(credentialRequestID, transactionID)

	Delete/cancel the requested issuance of a secure credential.

Authorization: cms.request.write

	Parameters

	
	credentialRequestID (str) – The ID of the credential request.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
findCredentials(expressions, transactionID)

	Retrieve a list of credentials that match the passed in search criteria.

Authorization: To be defined

	Parameters

	
	expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator
(one of <, >, =, >=, <=) and the attribute value.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, in the case of success the
list of matching credentials.

	
readCredential(credentialID, attributes, transactionID)

	Retrieve the attributes/status of an issued credential. A wide range of
information may be returned, dependant on the type of credential that was
issued, smart card, mobile, passport, etc.

Authorization: cms.credential.read

	Parameters

	
	credentialID (str) – The ID of the credential.

	attributes (set) – The (optional) set of required attributes to retrieve.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, in the case of success the
requested data will be returned.

	
suspendCredential(credentialID, additionalData, transactionID)

	Suspend an issued credential. For electronic credentials this will suspend any
PKI certificates that are present.

Authorization: cms.credential.write

	Parameters

	
	credentialID (str) – The ID of the credential.

	additionalData (dict) – Additional data relating to the request,
e.g. reason for suspension.

	transactionID (string) – The (optional) client generated transactionID.

	Returns

	a status indicating success or error.

	
unsuspendCredential(credentialID, additionalData, transactionID)

	Unsuspend an issued credential. For electronic credentials this will unsuspend any
PKI certificates that are present.

Authorization: cms.credential.write

	Parameters

	
	credentialID (str) – The ID of the credential.

	additionalData (dict) – Additional data relating to the request,
e.g. reason for unsuspension.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
revokeCredential(credentialID, additionalData, transactionID)

	Revoke an issued credential. For electronic credentials this will revoke any
PKI certificates that are present.

Authorization: cms.credential.write

	Parameters

	
	credentialID (str) – The ID of the credential.

	additionalData (dict) – Additional data relating to the request,
e.g. reason for revocation.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
findCredentialProfiles(expressions, transactionID)

	Retrieve the data/status of a credential request.

Authorization: To be defined

	Parameters

	
	expressions (list[(str,str,str)]) – The expressions to evaluate. Each expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=, !=) and the attribute value

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, and in case of success the matching credential profile list.

5.7.2. Attributes

The “attributes” parameter used in “read” calls is used to provide a set of
identifiers that limit the amount of data that is returned.
It is often the case that the whole data set is not required, but instead,
a subset of that data.
@@ -128,7 +128,7 @@ attributes to retrieve.

E.g. For surname/familyname, use OID 2.5.4.4 or id-at-surname.

Some calls may require new attributes to be defined. E.g. when
retrieving biometric data, the caller may only want the meta data about
that biometric, rather than the actual biometric data.

5.8. ID Usage

5.8.1. Services

	
verifyIdentity(UIN[, IDAttribute])

	Verify Identity based on UIN and set of Identity Attributes (biometric data, credential, etc.)

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	IDAttribute (list[str]) – A list of list of pair (name,value) requested

	Returns

	Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

	
identify([inIDAttribute][, outIDAttribute])

	Identify a person based on a set of Identity Attributes (biometric data, credential, etc.)

Authorization: To be defined

	Parameters

	
	inIDAttribute (list[str]) – A list of list of pair (name,value) requested

	outIDAttribute (list[str]) – A list of list of attribute names requested

	Returns

	Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

	
readAttributes(UIN, names)

	Read person attributes.

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	names (list[str]) – The names of the attributes requested

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.)
the value is replaced with an error

	
readAttributeSet(UIN, setName)

	Read person attributes corresponding to a predefined set name.

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	setName (str) – The name of predefined attributes set name

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.)
the value is replaced with an error

5.9. Under discussion

5.9.1. Services

	
listCredentialProfiles(filter, transactionID)

	Retrieve the list of credential profiles.

Authorization: To be defined

	Parameters

	
	filter (set) – The (optional) set of required attributes to retrieve.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, and in case of success the credential profile list.

	
readCredentialProfile(credentialProfileID, filter, transactionID)

	Retrieve the credential profile.

Authorization: To be defined

	Parameters

	
	credentialProfileID (str) – The ID of the credential profile.

	filter (set) – The (optional) set of required attributes to retrieve.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, and in case of success the credential profile.

	
updateDocumentValStatus(documentID, status, transactionID)

	Updates the status of a document validation.

Authorization: To be defined

	Parameters

	
	documentID (str) – The ID of the document.

	status – The status of the document validation, e.g. ‘ready’ to validate.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
readDocumentValStatus(documentID, transactionID)

	Retrieve the status of a document validation.

Authorization: To be defined

	Parameters

	
	documentID (str) – The ID of the document.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, and in case of success the document validation status and its metadata.

	
createBiometric(personID, biometricID, biometricData, transactionID)

	Add a new biometric for a person.

Authorization: To be defined

	Parameters

	
	personID (str) – The ID of the person.

	biometricID (str) – The ID of the biometric.

	biometricData – The content and attributes of the biometric.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error. In the case of success, a biometric identifier.

	
readBiometric(biometricID, filter, transactionID)

	Retrieve biometric data.

NOTE - do we want this method in the system? We don’t beleive that this data should be
retrievable. A separate method is provided for reading enrolled biometric metadata (see below).

Authorization: To be defined

	Parameters

	
	biometricID (str) – The ID of the biometric.

	filter (set) – The (optional) set of required attributes to retrieve.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, and in case of success the biometric data.

	
readBiometricMetadata(biometricID, filter, transactionID)

	Retrieve biometric data.

Authorization: To be defined

	Parameters

	
	biometricID (str) – The ID of the biometric.

	filter (set) – The (optional) set of required attributes to retrieve.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, and in case of success the biometric metadata.

	
updateBiometric(biometricID, biometricData, transactionID)

	Update a biometric for a person.

Authorization: To be defined

	Parameters

	
	personID (str) – The ID of the person.

	biometricID (str) – The ID of the biometric.

	biometricData – The content and attributes of the biometric, this can be partial data.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
deleteBiometric(biometricID, transactionID)

	Delete a biometric for a person.

Authorization: To be defined

	Parameters

	
	biometricID (str) – The ID of the biometric.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
updateBiometricValStatus(biometricID, status, transactionID)

	Updates the status of a biometric validation.

Authorization: To be defined

	Parameters

	
	biometricID (str) – The ID of the biometric.

	status – The status of the biometric validation, e.g. ‘ready’ to validate.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, and in case of success the biometric validation status.

	
readBiometricValStatus(biometricID, transactionID)

	Retrieve the status of a biometric validation.

Authorization: To be defined

	Parameters

	
	biometricID (str) – The ID of the biometric.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, and in case of success the biometric validation status and metadata.

	
createBiographic(personID, biographicID, biographicData, transactionID)

	Add a new biographic for a person.

Authorization: To be defined

	Parameters

	
	personID (str) – The ID of the person.

	biographicID (str) – The ID of the biographic.

	biographicData – The content and attributes of the biographic.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error. In the case of success, a biographic identifier.

	
readBiographic(biographicID, filter, transactionID)

	Retrieve biographic data.

Authorization: To be defined

	Parameters

	
	biographicID (str) – The ID of the biographic.

	filter (set) – The (optional) set of required attributes to retrieve.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, and in case of success the biographic data.

	
updateBiographic(biographicID, biographicData, transactionID)

	Update a biographic for a person.

Authorization: To be defined

	Parameters

	
	personID (str) – The ID of the person.

	biographicID (str) – The ID of the biographic.

	biographicData – The content and attributes of the biographic, this can be partial data.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
deleteBiographic(biographicID, transactionID)

	Delete a biographic for a person.

Authorization: To be defined

	Parameters

	
	biographicID (str) – The ID of the biographic.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
updateBiographicValStatus(biographicID, status, transactionID)

	Updates the status of a biographic validation.

Authorization: To be defined

	Parameters

	
	biographicID (str) – The ID of the biographic.

	status – The status of the biographic validation, e.g. ‘ready’ to validate.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, and in case of success the biographic validation status.

	
readBiographicValStatus(biographicID, transactionID)

	Retrieve the status of a biographic validation.

Authorization: To be defined

	Parameters

	
	biographicID (str) – The ID of the biographic.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, and in case of success the biographic validation status and metadata.

5.9.2. Filter

The “filter” parameter used in “read” calls is used to provide a set of
identifiers that limit the amount of data that is returned.
It is often the case that the whole data set is not required, but instead,
a subset of that data.
Where possible, existing standards based identifiers should be used for the
attributes to retrieve.

E.g. For surname/familyname, use OID 2.5.4.4 or id-at-surname.

Some calls may require new filter attributes to be defined. E.g. when
retrieving biometric data, the caller may only want the meta data about
that biometric, rather than the actual biometric data.

5.9.3. Transaction ID

The “transactionID” is a string provided by the client application to identity
the request being submitted. It can be used for tracing and debugging.

5.9.4. Data Model

Table 5.11 Enrolment Data Model

	Type

	Description

	Example

	Person

	Person who is known to an identity assurance system.

	TBD

	Document Data

	a dictionary (list of names and values) giving the document data of interest for the document services.

	TBD

	Biometric Data

	Digital representation of biometric characteristics.
All images can be passed by value (image buffer is in the request) or by reference (the address of the
image is in the request).
All images are compliant with ISO 19794. ISO 19794 allows multiple encoding and supports additional
metadata specific to fingerprint, palmprint, portrait or iris.

	fingerprint, portrait, iris

	Biographic Data

	a dictionary (list of names and values) giving the biographic data of interest for the biographic services.

	TBD

6. Components

This chapter describes for each component the interfaces that it MAY implement.

6.1. Enrollment Component

The enrollment component MAY implement the following interfaces:

6.1.1. Enrollment Services

This interface describes enrollment services in the context of an identity system. It is based on
the following principles:

	When enrollment is done in one step, the CreateEnrollment can contain all the data and an additional flag (finalize) to indicate all data was collected.

	During the process, enrollment structure can be updated. Only the data that changed need to be transferred. Data not included is left unchanged on the server. In the following example, the biographic data is not changed.

	Images can be passed by value or reference. When passed by value, they are base64-encoded.

	Existing standards are used whenever possible, for instance preferred image format for biometric data is ISO-19794.

About documents

Adding one document or deleting one document implies that:

	The full document list is read (ReadEnrollment)

	The document list is altered locally to the enrollment client (add or delete)

	The full document list is sent back using the UpdateEnrollment service

6.1.1.1. Services

	
createEnrollment(enrollmentID, enrollmentTypeId, enrollmentFlags, requestData, biometricData, biographicData, documentData, finalize, transactionID)

	Insert a new enrollment.

Authorization: enroll.write

	Parameters

	
	enrollmentID (str) – The ID of the enrollment. If the enrollment already exists for the ID an error is returned.

	enrollmentTypeId (str) – The enrollment type ID of the enrollment.

	enrollmentFlags (dict) – The enrollment custom flags.

	requestData (dict) – The enrollment data related to the enrollment itself.

	biometricData (list) – The enrollment biometric data.

	biographicData (dict) – The enrollment biographic data.

	documentData (list) – The enrollment biometric data.

	finalize (str) – Flag to indicate that data was collected.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error and in case of success the enrollment ID.

	
readEnrollment(enrollmentID, attributes, transactionID)

	Retrieve the attributes of an enrollment.

Authorization: enroll.read

	Parameters

	
	enrollmentID (str) – The ID of the enrollment.

	attributes (set) – The (optional) set of required attributes to retrieve.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error and in case of success the enrollment data.

	
updateEnrollment(enrollmentID, enrollmentTypeId, enrollmentFlags, requestData, biometricData, biographicData, documentData, finalize, transactionID)

	Update an enrollment.

Authorization: enroll.write

	Parameters

	
	enrollmentID (str) – The ID of the enrollment. If the enrollment already exists for the ID an error is returned.

	enrollmentTypeId (str) – The enrollment type ID of the enrollment.

	enrollmentFlags (dict) – The enrollment custom flags.

	requestData (dict) – The enrollment data related to the enrollment itself.

	biometricData (list) – The enrollment biometric data, this can be partial data.

	biographicData (dict) – The enrollment biographic data.

	documentData (list) – The enrollment biometric data, this can be partial data.

	finalize (str) – Flag to indicate that data was collected.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
partialupdateEnrollment(enrollmentID, enrollmentTypeId, enrollmentFlags, requestData, biometricData, biographicData, documentData, finalize, transactionID)

	Update part of an enrollment. Not all attributes are mandatory. The payload
is defined as per RFC 7396 [https://tools.ietf.org/html/rfc7396.html].

Authorization: enroll.write

	Parameters

	
	enrollmentID (str) – The ID of the enrollment. If the enrollment already exists for the ID an error is returned.

	enrollmentTypeId (str) – The enrollment type ID of the enrollment.

	enrollmentFlags (dict) – The enrollment custom flags.

	requestData (dict) – The enrollment data related to the enrollment itself.

	biometricData (list) – The enrollment biometric data, this can be partial data.

	biographicData (dict) – The enrollment biographic data.

	documentData (list) – The enrollment biometric data, this can be partial data.

	finalize (str) – Flag to indicate that data was collected.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
finalizeEnrollment(enrollmentID, transactionID)

	When all the enrollment steps are done, the enrollment client indicates to the enrollment server that all data has been collected and that any further processing can be triggered.

Authorization: enroll.write

	Parameters

	
	enrollmentID (str) – The ID of the enrollment.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
deleteEnrollment(enrollmentID, transactionID)

	Deletes the enrollment

Authorization: enroll.write

	Parameters

	
	enrollmentID (str) – The ID of the enrollment.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
findEnrollments(expressions, transactionID)

	Retrieve a list of enrollments which match passed in search criteria.

Authorization: enroll.read

	Parameters

	
	expressions (list[(str,str,str)]) – The expressions to evaluate. Each expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=) and the attribute value

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error and in case of success the matching enrollment list.

	
sendBuffer(enrollmentId, data)

	This service is used to send separately the buffers of the images. Buffers can be sent any time from the enrollment client prior to the create or update.

Authorization: enroll.buf.write

	Parameters

	
	enrollmentID (str) – The ID of the enrollment.

	data (image) – The image of the request.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error and in case of success the buffer ID.

	
getBuffer(enrollmentId, bufferId)

	This service is used to get images of buffers.

Authorization: enroll.buf.read

	Parameters

	
	enrollmentID (str) – The ID of the enrollment.

	bufferID (str) – The ID of the buffer.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error and in case of success the image of the buffer.

6.1.1.2. Attributes

The “attributes” parameter used in “read” calls is used to provide a set of
identifiers that limit the amount of data that is returned.
It is often the case that the whole data set is not required, but instead,
a subset of that data.
Where possible, existing standards based identifiers should be used for the
attributes to retrieve.

E.g. For surname/familyname, use OID 2.5.4.4 or id-at-surname.

Some calls may require new attributes to be defined. E.g. when
retrieving biometric data, the caller may only want the meta data about
that biometric, rather than the actual biometric data.

6.1.1.3. Transaction ID

The transactionID is a string provided by the client application to identity
the request being submitted. It can be used for tracing and debugging.

6.1.1.4. Data Model

Table 6.1 Enrolment Data Model

	Type

	Description

	Example

	Enrollment

	Set of person data which are captured.

	TBD

	Document Data

	The document data of the enrollment.

	TBD

	Biometric Data

	Digital representation of biometric characteristics.
All images can be passed by value (image buffer is in the request) or by reference (the address of the
image is in the request).
All images are compliant with ISO 19794. ISO 19794 allows multiple encoding and supports additional
metadata specific to fingerprint, palmprint, portrait or iris.

	fingerprint, portrait, iris

	Biographic Data

	a dictionary (list of names and values) giving the biographic data of interest for the biometric services.

	TBD

	Enrollment Flags

	a dictionary (list of names and values) for custom flags.

	TBD

	Request Data

	a dictionary (list of names and values) for data related to the enrollment itself (the operator, the station, the data, etc.).

	TBD

	Attributes

	a dictionary (list of names and values or range of values) describing the attributes to return.
Attributes can apply on biographic data, document data, request data, or enrollment flag data.

	TBD

	Expressions

	Each expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=, !=) and the attribute value

	TBD

[image: !include "skin.iwsd" class Enrollment { string enrollmentID; } class BiographicData { string field1; int field2; date field3; ... } Enrollment o- BiographicData class BiometricData { byte[] image; URL imageRef; } Enrollment o-- "*" BiometricData class DocumentData { int documentType; } Enrollment o-- "*" DocumentData class DocumentPart { byte[] image; URL imageRef; } DocumentData o-- "*" DocumentPart class RequestData { string field1; int field2; date field3; ... } Enrollment o- RequestData class EnrollmentFlagsData { string field1; int field2; date field3; ... } Enrollment o- EnrollmentFlagsData]

Fig. 6.1 Enrollment Data Model

6.2. Population Registry

The population registry component MAY implement the following interfaces:

6.2.1. Notification

See Notification for the technical details of this interface.

The subscription & notification process is managed by a middleware and is described
in the following diagram:

[image: !include "skin.iwsd" hide footbox participant "Emitter" as PR participant "Notification\nEngine" as N participant "Subscriber" as CR note over PR,N: First step is to create the topic PR -> N: create_topic(name) activate PR activate N N --> PR: uuid deactivate N deactivate PR note over N,CR: Then a system can subscribe for events published on that topic CR -> N: subscribe(topic,URL) activate CR activate N N --> CR: id deactivate CR deactivate N ... later ... note over N,CR: confirm the address before the subscription is active N -> CR: notify(token) activate N activate CR CR -> N: subscribe_CB(token) activate N #FFBBB N --> CR: ok deactivate N CR --> N: ok deactivate CR deactivate N note over PR,CR: it is now possible to publish notification PR -> N: publish(message) activate PR activate N N -> N: store N --> PR: ok deactivate PR ... loop subscriptions N -> CR: subscribe_CB(message) activate CR CR --> N: ok deactivate CR end deactivate N]

Fig. 6.2 Subscription & Notification Process

6.2.1.1. Services

6.2.1.1.1. For the Subscriber

	
subscribe(topic, URL)

	Subscribe a URL to receive notifications sent to one topic

Authorization: notif.sub.write

	Parameters

	
	topic (str) – Topic

	URL (str) – URL to be called when a notification is available

	Returns

	a subscription ID

This service is synchronous.

	
listSubscriptions()

	Get all subscriptions

Authorization: notif.sub.read

	Parameters

	URL (str) – URL to be called when a notification is available

	Returns

	a subscription ID

This service is synchronous.

	
unsubscribe(id)

	Unsubscribe a URL from the list of receiver for one topic

Authorization: notif.sub.write

	Parameters

	id (str) – Subscription ID

	Returns

	bool

This service is synchronous.

	
confirm(token)

	Used to confirm that the URL used during the subscription is valid

Authorization: notif.sub.write

	Parameters

	token (str) – A token send through the URL.

	Returns

	bool

This service is synchronous.

6.2.1.1.2. For the Publisher

	
createTopic(topic)

	Create a new topic. This is required before an event can be sent to it.

Authorization: notif.topic.write

	Parameters

	topic (str) – Topic

	Returns

	N/A

This service is synchronous.

	
listTopics()

	Get the list of all existing topics.

Authorization: notif.topic.read

	Returns

	N/A

This service is synchronous.

	
deleteTopic(topic)

	Delete a topic.

Authorization: notif.topic.write

	Parameters

	topic (str) – Topic

	Returns

	N/A

This service is synchronous.

	
publish(topic, subject, message)

	Notify of a new event all systems that subscribed to this topic

Authorization: notif.topic.publish

	Parameters

	
	topic (str) – Topic

	subject (str) – The subject of the message

	message (str) – The message itself (a string buffer)

	Returns

	N/A

This service is asynchronous (systems that subscribed on this topic are notified asynchronously).

6.2.1.2. Dictionaries

As an example, below there is a list of events that each component might handle.

Table 6.2 Event Type

	Event Type

	Emitted by CR

	Emitted by PR

	Live birth

	✔

	

	Death

	✔

	

	Fœtal Death

	✔

	

	Marriage

	✔

	

	Divorce

	✔

	

	Annulment

	✔

	

	Separation, judicial

	✔

	

	Adoption

	✔

	

	Legitimation

	✔

	

	Recognition

	✔

	

	Change of name

	✔

	

	Change of gender

	✔

	

	New person

	
	✔

	Duplicate person

	✔

	✔

6.2.2. Data Access

See Data Access for the technical details of this interface.

6.2.2.1. Services

	
readPersonAttributes(UIN, names)

	Read person attributes.

Authorization: pr.person.read or cr.person.read

	Parameters

	
	UIN (str) – The person’s UIN

	names (list[str]) – The names of the attributes requested

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can request person's attributes from PR CR -> PR: readPersonAttributes(UIN,[names]) PR -->> CR: attributes note over CR,PR: PR can request person's attributes from CR PR -> CR: readPersonAttributes(UIN,[names]) CR -->> PR: attributes]

Fig. 6.3 readPersonAttributes Sequence Diagram

	
matchPersonAttributes(UIN, attributes)

	Match person attributes. This service is used to check the value of attributes without exposing private data.
The implementation can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: pr.person.match or cr.person.match

	Parameters

	
	UIN (str) – The person’s UIN

	attributes (list[(str,str)]) – The attributes to match. Each attribute is described with its name and the expected value

	Returns

	If all attributes match, a Yes is returned. If one attribute does not match, a No is returned along with a list of (name,reason) for each non-matching attribute.

This service is synchronous. It can be used to match attributes in CR or in PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can match person's attributes in PR CR -> PR: matchPersonAttributes(UIN,[attributes]) PR -->> CR: Y/N+reasons note over CR,PR: PR can match person's attributes in CR PR -> CR: matchPersonAttributes(UIN,[attributes]) CR -->> PR: Y/N+reasons]

Fig. 6.4 matchPersonAttributes Sequence Diagram

	
verifyPersonAttributes(UIN, expressions)

	Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s attributes
without exposing private data
The implementation can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: pr.person.verify or cr.person.verify

	Parameters

	
	UIN (str) – The person’s UIN

	expressions (list[(str,str,str)]) – The expressions to evaluate. Each expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=) and the attribute value

	Returns

	A Yes if all expressions are true, a No if one expression is false, a Unknown if To be defined

This service is synchronous. It can be used to verify attributes in CR or in PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can verify person's attributes in PR CR -> PR: verifyPersonAttributes(UIN,[expressions]) PR -->> CR: Y/N/U note over CR,PR: PR can verify person's attributes in CR PR -> CR: verifyPersonAttributes(UIN,[expressions]) CR -->> PR: Y/N/U]

Fig. 6.5 verifyPersonAttributes Sequence Diagram

	
queryPersonUIN(attributes)

	Query the persons by a set of attributes. This service is used when the UIN is unknown.
The implementation can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: pr.person.read or cr.person.read

	Parameters

	attributes (list[(str,str)]) – The attributes to be used to find UIN. Each attribute is described with its name and its value

	Returns

	a list of matching UIN

This service is synchronous. It can be used to get the UIN of a person.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can get UIN from PR CR -> PR: queryPersonUIN([attributes]) PR -->> CR: [UIN] note over CR,PR: PR can get UIN from CR PR -> CR: queryPersonUIN([attributes]) CR -->> PR: [UIN]]

Fig. 6.6 queryPersonUIN Sequence Diagram

	
queryPersonList(attributes, names)

	Query the persons by a list of attributes and their values.
This service is proposed as an optimization of a sequence of calls to
queryPersonUIN() and readPersonAttributes().

Authorization: pr.person.read or cr.person.read

	Parameters

	
	attributes (list[(str,str)]) – The attributes to be used to find the persons. Each attribute is described with its name and its value

	names (list[str]) – The names of the attributes requested

	Returns

	a list of lists of pairs (name,value). In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can request person's attributes from PR CR -> PR: queryPersonList([attributes],[names]) PR -->> CR: [attributes] note over CR,PR: PR can request person's attributes from CR PR -> CR: queryPersonList([attributes],[names]) CR -->> PR: [attributes]]

Fig. 6.7 queryPersonList Sequence Diagram

	
readDocument(UINs, documentType, format)

	Read in a selected format (PDF, image, …) a document such as a marriage certificate.

Authorization: pr.document.read or cr.document.read

	Parameters

	
	UIN (list[str]) – The list of UINs for the persons concerned by the document

	documentType (str) – The type of document (birth certificate, etc.)

	format (str) – The format of the returned/requested document

	Returns

	The list of the requested documents

This service is synchronous. It can be used to get the documents for a person.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can get a document from PR CR -> PR: readDocument([UIN],documentType,format) PR -->> CR: [documents] note over CR,PR: PR can get a document from CR PR -> CR: readDocument([UIN],documentType,format) CR -->> PR: [documents]]

Fig. 6.8 readDocument Sequence Diagram

6.2.2.2. Dictionaries

As an example, below there is a list of attributes/documents that each component might handle.

Table 6.3 Person Attributes

	Attribute Name

	In CR

	In PR

	Description

	UIN

	✔

	✔

	

	first name

	✔

	✔

	

	last name

	✔

	✔

	

	spouse name

	✔

	✔

	

	date of birth

	✔

	✔

	

	place of birth

	✔

	✔

	

	gender

	✔

	✔

	

	date of death

	✔

	✔

	

	place of death

	✔

	
	

	reason of death

	✔

	
	

	status

	
	✔

	Example: missing, wanted, dead, etc.

Table 6.4 Certificate Attributes

	Attribute Name

	In CR

	In PR

	Description

	officer name

	✔

	
	

	number

	✔

	
	

	date

	✔

	
	

	place

	✔

	
	

	type

	✔

	
	

Table 6.5 Union Attributes

	Attribute Name

	In CR

	In PR

	Description

	date of union

	✔

	
	

	place of union

	✔

	
	

	conjoint1 UIN

	✔

	
	

	conjoint2 UIN

	✔

	
	

	date of divorce

	✔

	
	

Table 6.6 Filiation Attributes

	Attribute Name

	In CR

	In PR

	Description

	parent1 UIN

	✔

	
	

	parent2 UIN

	✔

	
	

Table 6.7 Document Type

	Document Type

	Description

	birth certificate

	To be completed

	death certificate

	To be completed

	marriage certificate

	To be completed

6.2.3. Population Registry Services

This interface describes services to manage a registry of the population in the context of an identity system. It is based on
the following principles:

	It supports a history of identities, meaning that a person has one identity and this identity
has a history.

	Images can be passed by value or reference. When passed by value, they are base64-encoded.

	Existing standards are used whenever possible.

	This interface is complementary to the data access interface. The data access interface is used
to query the persons and uses the reference identity to return attributes.

	The population registry can store the biometric data or can rely on the ABIS subsystem to do it.
The preferred solution, for a clean separation of data of different nature and by application
of GDPR principles, is to put the biometric data only in the ABIS. Yet many existing systems
store biometric data with the biographic data and this specification gives the flexibility to do it.

See Population Registry Management for the technical details of this interface.

6.2.3.1. Services

	
createPerson(personID, personData, transactionID)

	Create a new person.

Authorization: pr.person.write

	Parameters

	
	personID (str) – The ID of the person. If the person already exists for the ID an error is returned.

	personData – The person attributes.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
readPerson(personID, transactionID)

	Read the attributes of a person.

Authorization: pr.person.read

	Parameters

	
	personID (str) – The ID of the person.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error and in case of success the person data.

	
updatePerson(personID, personData, transactionID)

	Update a person.

Authorization: pr.person.write

	Parameters

	
	personID (str) – The ID of the person.

	personData (dict) – The person data.

	Returns

	a status indicating success or error.

	
deletePerson(personID, transactionID)

	Delete a person and all its identities.

Authorization: pr.person.write

	Parameters

	
	personID (str) – The ID of the person.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
mergePerson(personID1, personID2, transactionID)

	Merge two person records into a single one. Identity ID are preserved and in case of duplicates
an error is returned and no changes are done.
The reference identity is not changed.

Authorization: pr.person.write

	Parameters

	
	personID1 (str) – The ID of the person that will receive new identities

	personID2 (str) – The ID of the person that will give its identities. It will be deleted if the move of all identities is successful.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority.

	Returns

	a status indicating success or error.

	
createIdentity(personID, identityID, identity, transactionID)

	Create a new identity in a person. If no identityID is provided, a new one is generated. If identityID
is provided, it is checked for uniqueness and used for the identity if unique.
An error is returned if the provided identityID is not unique.

Authorization: pr.identity.write

	Parameters

	
	personID (str) – The ID of the person.

	identityID (str) – The ID of the identity.

	identity – The new identity data.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
readIdentity(personID, identityID, transactionID)

	Read one or all the identities of one person.

Authorization: pr.identity.read

	Parameters

	
	personID (str) – The ID of the person.

	identityID (str) – The ID of the identity. If not provided, all identities are returned.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error, and in case of success a list of identities.

	
updateIdentity(personID, identityID, identity, transactionID)

	Update an identity. An identity can be updated only in the status claimed.

Authorization: pr.identity.write

	Parameters

	
	personID (str) – The ID of the person.

	identityID (str) – The ID of the identity.

	identity – The identity data.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
partialUpdateIdentity(personID, identityID, identity, transactionID)

	Update part of an identity. Not all attributes are mandatory. The payload
is defined as per RFC 7396 [https://tools.ietf.org/html/rfc7396.html].
An identity can be updated only in the status claimed.

Authorization: pr.identity.write

	Parameters

	
	personID (str) – The ID of the person.

	identityID (str) – The ID of the identity.

	identity – Part of the identity data.

	Returns

	a status indicating success or error.

	
deleteIdentity(personID, identityID, transactionID)

	Delete an identity.

Authorization: pr.identity.write

	Parameters

	
	personID (str) – The ID of the person.

	identityID (str) – The ID of the identity.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
setIdentityStatus(personID, identityID, status, transactionID)

	Set an identity status.

Authorization: pr.identity.write

	Parameters

	
	personID (str) – The ID of the person.

	identityID (str) – The ID of the identity.

	status (str) – The new status of the identity.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
defineReference(personID, identityID, transactionID)

	Define the reference identity of one person.

Authorization: pr.reference.write

	Parameters

	
	personID (str) – The ID of the person.

	identityID (str) – The ID of the identity being now the reference.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
readReference(personID, transactionID)

	Read the reference identity of one person.

Authorization: pr.reference.read

	Parameters

	
	personID (str) – The ID of the person.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error and in case of success the reference identity.

	
readGalleries(transactionID)

	Read the ID of all the galleries.

Authorization: pr.gallery.read

	Parameters

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error, and in case of success a list of gallery ID.

	
readGalleryContent(galleryID, transactionID)

	Read the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: pr.gallery.read

	Parameters

	
	galleryID (str) – Gallery whose content will be returned.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error. In case of success a list of person/identity IDs.

6.2.3.2. Data Model

Table 6.8 Population Registry Data Model

	Type

	Description

	Example

	Gallery

	A group of persons related by a common purpose, designation, or status.
A person can belong to multiple galleries.

	VIP, Wanted, etc.

	Person

	Person who is known to an identity assurance system. A person record has:

	a status, such as active or inactive, defining the status of the record
(the record can be excluded from queries based on this status),

	a physical status, such as alive or dead, defining the status of the person,

	a set of identities, keeping track of all identity data submitted by the person during
the life of the system,

	a reference identity, i.e. a consolidated view of all the identities
defining the current correct identity of the person. It corresponds usually to the last
valid identity but it can also include data from previous identities.

	N/A

	Identity

	The attributes describing an identity of a person.
An identity has a status such as: claimed (identity not yet validated), valid
(the identity is valid), invalid (the identity is not valid), revoked (the identity
cannot be used any longer).

An identity can be updated only in the status claimed.

The allowed transitions for the status are represented below:

[image: [*] --> claimed claimed --> valid claimed -->invalid valid --> revoked]

The attributes are separated into two categories: the biographic data and the contextual data.

	N/A

	Biographic Data

	A dictionary (list of names and values) giving the biographic data of the identity

	firstName, lastName, dateOfBirth, etc.

	Contextual Data

	A dictionary (list of names and values) attached to the context of establishing the identity

	operatorName, enrollmentDate, etc.

	Biometric Data

	Digital representation of biometric characteristics.
All images can be passed by value (image buffer is in the request) or by reference (the address of the
image is in the request).
All images are compliant with ISO 19794. ISO 19794 allows multiple encoding and supports additional
metadata specific to fingerprint, palmprint, portrait or iris.

	fingerprint, portrait, iris

	Document

	The document data (images) attached to the identity and used to validate it.

	Birth certificate, invoice

[image: class Gallery { string galleryID; } class Person { string personID; enum status: Active | Inactive; enum physicalStatus: Alive | Dead; } class Identity { string identityID; enum status: Claimed | Valid | Invalid | Revoked; byte[] clientData; } Gallery "*" -- "*" Identity Person -- "*" Identity: "identities" Person -- Identity: "reference" class BiographicData { string firstName; string lastName; date dateOfBirth; date dateOfDeath; string addressLine1; ... } Identity o- BiographicData class ContextualData { string field1; int field2; date field3; ... } ContextualData -o Identity class BiometricData { string type string subType byte[] image URL imageRef ... } Identity "1" -- "0..*" BiometricData class Document { enum type: Doc1 | Doc2 | Signature | etc; string instance; } class DocumentPart { int[] pages; byte[] data; URL dataRef; int width; int height; date captureDate; string captureDevice; string format; } Identity "1" -- "0..*" Document Document "1" -- "1..*" DocumentPart]

Fig. 6.9 Population Registry Data Model

6.3. Civil Registry

The civil registry component MAY implement the following interfaces:

6.3.1. Notification

See Notification for the technical details of this interface.

The subscription & notification process is managed by a middleware and is described
in the following diagram:

[image: !include "skin.iwsd" hide footbox participant "Emitter" as PR participant "Notification\nEngine" as N participant "Subscriber" as CR note over PR,N: First step is to create the topic PR -> N: create_topic(name) activate PR activate N N --> PR: uuid deactivate N deactivate PR note over N,CR: Then a system can subscribe for events published on that topic CR -> N: subscribe(topic,URL) activate CR activate N N --> CR: id deactivate CR deactivate N ... later ... note over N,CR: confirm the address before the subscription is active N -> CR: notify(token) activate N activate CR CR -> N: subscribe_CB(token) activate N #FFBBB N --> CR: ok deactivate N CR --> N: ok deactivate CR deactivate N note over PR,CR: it is now possible to publish notification PR -> N: publish(message) activate PR activate N N -> N: store N --> PR: ok deactivate PR ... loop subscriptions N -> CR: subscribe_CB(message) activate CR CR --> N: ok deactivate CR end deactivate N]

Fig. 6.10 Subscription & Notification Process

6.3.1.1. Services

6.3.1.1.1. For the Subscriber

	
subscribe(topic, URL)

	Subscribe a URL to receive notifications sent to one topic

Authorization: notif.sub.write

	Parameters

	
	topic (str) – Topic

	URL (str) – URL to be called when a notification is available

	Returns

	a subscription ID

This service is synchronous.

	
listSubscriptions()

	Get all subscriptions

Authorization: notif.sub.read

	Parameters

	URL (str) – URL to be called when a notification is available

	Returns

	a subscription ID

This service is synchronous.

	
unsubscribe(id)

	Unsubscribe a URL from the list of receiver for one topic

Authorization: notif.sub.write

	Parameters

	id (str) – Subscription ID

	Returns

	bool

This service is synchronous.

	
confirm(token)

	Used to confirm that the URL used during the subscription is valid

Authorization: notif.sub.write

	Parameters

	token (str) – A token send through the URL.

	Returns

	bool

This service is synchronous.

6.3.1.1.2. For the Publisher

	
createTopic(topic)

	Create a new topic. This is required before an event can be sent to it.

Authorization: notif.topic.write

	Parameters

	topic (str) – Topic

	Returns

	N/A

This service is synchronous.

	
listTopics()

	Get the list of all existing topics.

Authorization: notif.topic.read

	Returns

	N/A

This service is synchronous.

	
deleteTopic(topic)

	Delete a topic.

Authorization: notif.topic.write

	Parameters

	topic (str) – Topic

	Returns

	N/A

This service is synchronous.

	
publish(topic, subject, message)

	Notify of a new event all systems that subscribed to this topic

Authorization: notif.topic.publish

	Parameters

	
	topic (str) – Topic

	subject (str) – The subject of the message

	message (str) – The message itself (a string buffer)

	Returns

	N/A

This service is asynchronous (systems that subscribed on this topic are notified asynchronously).

6.3.1.2. Dictionaries

As an example, below there is a list of events that each component might handle.

Table 6.9 Event Type

	Event Type

	Emitted by CR

	Emitted by PR

	Live birth

	✔

	

	Death

	✔

	

	Fœtal Death

	✔

	

	Marriage

	✔

	

	Divorce

	✔

	

	Annulment

	✔

	

	Separation, judicial

	✔

	

	Adoption

	✔

	

	Legitimation

	✔

	

	Recognition

	✔

	

	Change of name

	✔

	

	Change of gender

	✔

	

	New person

	
	✔

	Duplicate person

	✔

	✔

6.3.2. Data Access

See Data Access for the technical details of this interface.

6.3.2.1. Services

	
readPersonAttributes(UIN, names)

	Read person attributes.

Authorization: pr.person.read or cr.person.read

	Parameters

	
	UIN (str) – The person’s UIN

	names (list[str]) – The names of the attributes requested

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can request person's attributes from PR CR -> PR: readPersonAttributes(UIN,[names]) PR -->> CR: attributes note over CR,PR: PR can request person's attributes from CR PR -> CR: readPersonAttributes(UIN,[names]) CR -->> PR: attributes]

Fig. 6.11 readPersonAttributes Sequence Diagram

	
matchPersonAttributes(UIN, attributes)

	Match person attributes. This service is used to check the value of attributes without exposing private data.
The implementation can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: pr.person.match or cr.person.match

	Parameters

	
	UIN (str) – The person’s UIN

	attributes (list[(str,str)]) – The attributes to match. Each attribute is described with its name and the expected value

	Returns

	If all attributes match, a Yes is returned. If one attribute does not match, a No is returned along with a list of (name,reason) for each non-matching attribute.

This service is synchronous. It can be used to match attributes in CR or in PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can match person's attributes in PR CR -> PR: matchPersonAttributes(UIN,[attributes]) PR -->> CR: Y/N+reasons note over CR,PR: PR can match person's attributes in CR PR -> CR: matchPersonAttributes(UIN,[attributes]) CR -->> PR: Y/N+reasons]

Fig. 6.12 matchPersonAttributes Sequence Diagram

	
verifyPersonAttributes(UIN, expressions)

	Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s attributes
without exposing private data
The implementation can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: pr.person.verify or cr.person.verify

	Parameters

	
	UIN (str) – The person’s UIN

	expressions (list[(str,str,str)]) – The expressions to evaluate. Each expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=) and the attribute value

	Returns

	A Yes if all expressions are true, a No if one expression is false, a Unknown if To be defined

This service is synchronous. It can be used to verify attributes in CR or in PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can verify person's attributes in PR CR -> PR: verifyPersonAttributes(UIN,[expressions]) PR -->> CR: Y/N/U note over CR,PR: PR can verify person's attributes in CR PR -> CR: verifyPersonAttributes(UIN,[expressions]) CR -->> PR: Y/N/U]

Fig. 6.13 verifyPersonAttributes Sequence Diagram

	
queryPersonUIN(attributes)

	Query the persons by a set of attributes. This service is used when the UIN is unknown.
The implementation can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: pr.person.read or cr.person.read

	Parameters

	attributes (list[(str,str)]) – The attributes to be used to find UIN. Each attribute is described with its name and its value

	Returns

	a list of matching UIN

This service is synchronous. It can be used to get the UIN of a person.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can get UIN from PR CR -> PR: queryPersonUIN([attributes]) PR -->> CR: [UIN] note over CR,PR: PR can get UIN from CR PR -> CR: queryPersonUIN([attributes]) CR -->> PR: [UIN]]

Fig. 6.14 queryPersonUIN Sequence Diagram

	
queryPersonList(attributes, names)

	Query the persons by a list of attributes and their values.
This service is proposed as an optimization of a sequence of calls to
queryPersonUIN() and readPersonAttributes().

Authorization: pr.person.read or cr.person.read

	Parameters

	
	attributes (list[(str,str)]) – The attributes to be used to find the persons. Each attribute is described with its name and its value

	names (list[str]) – The names of the attributes requested

	Returns

	a list of lists of pairs (name,value). In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can request person's attributes from PR CR -> PR: queryPersonList([attributes],[names]) PR -->> CR: [attributes] note over CR,PR: PR can request person's attributes from CR PR -> CR: queryPersonList([attributes],[names]) CR -->> PR: [attributes]]

Fig. 6.15 queryPersonList Sequence Diagram

	
readDocument(UINs, documentType, format)

	Read in a selected format (PDF, image, …) a document such as a marriage certificate.

Authorization: pr.document.read or cr.document.read

	Parameters

	
	UIN (list[str]) – The list of UINs for the persons concerned by the document

	documentType (str) – The type of document (birth certificate, etc.)

	format (str) – The format of the returned/requested document

	Returns

	The list of the requested documents

This service is synchronous. It can be used to get the documents for a person.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR note over CR,PR: CR can get a document from PR CR -> PR: readDocument([UIN],documentType,format) PR -->> CR: [documents] note over CR,PR: PR can get a document from CR PR -> CR: readDocument([UIN],documentType,format) CR -->> PR: [documents]]

Fig. 6.16 readDocument Sequence Diagram

6.3.2.2. Dictionaries

As an example, below there is a list of attributes/documents that each component might handle.

Table 6.10 Person Attributes

	Attribute Name

	In CR

	In PR

	Description

	UIN

	✔

	✔

	

	first name

	✔

	✔

	

	last name

	✔

	✔

	

	spouse name

	✔

	✔

	

	date of birth

	✔

	✔

	

	place of birth

	✔

	✔

	

	gender

	✔

	✔

	

	date of death

	✔

	✔

	

	place of death

	✔

	
	

	reason of death

	✔

	
	

	status

	
	✔

	Example: missing, wanted, dead, etc.

Table 6.11 Certificate Attributes

	Attribute Name

	In CR

	In PR

	Description

	officer name

	✔

	
	

	number

	✔

	
	

	date

	✔

	
	

	place

	✔

	
	

	type

	✔

	
	

Table 6.12 Union Attributes

	Attribute Name

	In CR

	In PR

	Description

	date of union

	✔

	
	

	place of union

	✔

	
	

	conjoint1 UIN

	✔

	
	

	conjoint2 UIN

	✔

	
	

	date of divorce

	✔

	
	

Table 6.13 Filiation Attributes

	Attribute Name

	In CR

	In PR

	Description

	parent1 UIN

	✔

	
	

	parent2 UIN

	✔

	
	

Table 6.14 Document Type

	Document Type

	Description

	birth certificate

	To be completed

	death certificate

	To be completed

	marriage certificate

	To be completed

6.4. UIN Generator

The UIN generator component MAY implement the following interfaces:

6.4.1. UIN Management

See UIN Management for the technical details of this interface.

6.4.1.1. Services

	
generateUIN(attributes)

	Generate a new UIN.

Authorization: uin.generate

	Parameters

	attributes (list[(str,str)]) – A list of pair (attribute name, value) that can be used to allocate a new UIN

	Returns

	a new UIN or an error if the generation is not possible

This service is synchronous.

[image: !include "skin.iwsd" hide footbox participant "CR" as CR participant "PR" as PR participant "UIN Generator" as UIN note over CR,UIN: CR can request a new UIN CR -> UIN: generateUIN([attributes]) UIN -->> CR: UIN note over PR,UIN: PR can request a new UIN PR -> UIN: generateUIN([attributes]) UIN -->> PR: UIN]

Fig. 6.17 generateUIN Sequence Diagram

6.5. ABIS

The ABIS component MAY implement the following interfaces:

6.5.1. Biometrics

This interface describes biometric services in the context of an identity system. It is based on
the following principles:

	It supports only multi-encounter model, meaning that an identity can have multiple set of biometric data,
one for each encounter.

	It does not expose templates (only images) for CRUD services, with one exception to support
the use case of credentials with biometrics.

	Images can be passed by value or reference. When passed by value, they are base64-encoded.

	Existing standards are used whenever possible, for instance preferred image format for biometric data is ISO-19794.

About synchronous and asynchronous processing

Some services can be very slow depending on the algorithm used, the system workload, etc.
Services are described so that:

	If possible, the answer is provided synchronously in the response of the service.

	If not possible for some reason, a status PENDING is returned and the answer, when available, is
pushed to a callback provided by the client.

If no callback is provided, this indicates that the client wants a synchronous answer, whatever the time it takes.

If a callback is provided, the server will decide if the processing is done synchronously or asynchronously.

See Biometrics for the technical details of this interface.

6.5.1.1. Services

	
createEncounter(personID, encounterID, galleryID, biographicData, contextualData, biometricData, clientData, callback, transactionID, options)

	Create a new encounter. No identify is performed.

Authorization: abis.encounter.write

	Parameters

	
	personID (str) – The person ID. This is optional and will be generated if not provided

	encounterID (str) – The encounter ID. This is optional and will be generated if not provided

	galleryID (list(str)) – the gallery ID to which this encounter belongs. A minimum of one gallery must be provided

	biographicData (dict) – The biographic data (ex: name, date of birth, gender, etc.)

	contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

	biometricData (list) – the biometric data (images)

	clientData (bytes) – additional data not interpreted by the server but stored as is and returned
when encounter data is requested.

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority, algorithm.

	Returns

	a status indicating success, error, or pending operation.
In case of success, the person ID and the encounter ID are returned.
In case of pending operation, the result will be sent later.

	
readEncounter(personID, encounterID, callback, transactionID, options)

	Read the data of an encounter.

Authorization: abis.encounter.read

	Parameters

	
	personID (str) – The person ID

	encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the person are returned.

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority.

	Returns

	a status indicating success, error, or pending operation.
In case of success, the encounter data is returned.
In case of pending operation, the result will be sent later.

	
updateEncounter(personID, encounterID, galleryID, biographicData, contextualData, biometricData, callback, transactionID, options)

	Update an encounter.

Authorization: abis.encounter.write

	Parameters

	
	personID (str) – The person ID

	encounterID (str) – The encounter ID

	galleryID (list(str)) – the gallery ID to which this encounter belongs. A minimum of one gallery must be provided

	biographicData (dict) – The biographic data (ex: name, date of birth, gender, etc.)

	contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

	biometricData (list) – the biometric data (images)

	clientData (bytes) – additional data not interpreted by the server but stored as is and returned
when encounter data is requested.

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority, algorithm.

	Returns

	a status indicating success, error, or pending operation.
In case of success, the person ID and the encounter ID are returned.
In case of pending operation, the result will be sent later.

	
deleteEncounter(personID, encounterID, callback, transactionID, options)

	Delete an encounter.

Authorization: abis.encounter.write

	Parameters

	
	personID (str) – The person ID

	encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the person are deleted.

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority.

	Returns

	a status indicating success, error, or pending operation.
In case of pending operation, the operation status will be sent later.

	
mergeEncounter(personID1, personID2, callback, transactionID, options)

	Merge two sets of encounters into a single one. Encounter ID are preserved and in case of duplicates
an error is returned and no changes are done.

Authorization: abis.encounter.write

	Parameters

	
	personID1 (str) – The ID of the person that will receive new encounters

	personID2 (str) – The ID of the person that will give its encounters

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority.

	Returns

	a status indicating success, error, or pending operation.
In case of pending operation, the result will be sent later.

	
readTemplate(personID, encounterID, biometricType, biometricSubType, templateFormat, qualityFormat, callback, transactionID, options)

	Read the generated template.

Authorization: abis.encounter.read

	Parameters

	
	personID (str) – The person ID

	encounterID (str) – The encounter ID.

	biometricType (str) – The type of biometrics to consider (optional)

	biometricSubType (str) – The subtype of biometrics to consider (optional)

	templateFormat (str) – the format of the template to return (optional)

	qualityFormat (str) – the format of the quality to return (optional)

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority.

	Returns

	a status indicating success, error, or pending operation.
In case of success, a list of template data is returned.
In case of pending operation, the result will be sent later.

	
setEncounterStatus(personID, encounterID, status, transactionID)

	Set an encounter status.

Authorization: abis.encounter.write

	Parameters

	
	personID (str) – The ID of the person.

	encounterID (str) – The encounter ID.

	status (str) – The new status of the encounter.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	Returns

	a status indicating success or error.

	
readGalleries(callback, transactionID, options)

	Read the ID of all the galleries.

Authorization: abis.gallery.read

	Parameters

	
	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority.

	Returns

	a status indicating success, error, or pending operation.
A list of gallery ID is returned, either synchronously or using the callback.

	
readGalleryContent(galleryID, callback, transactionID, options)

	Read the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: abis.gallery.read

	Parameters

	
	galleryID (str) – Gallery whose content will be returned.

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority.

	Returns

	a status indicating success, error, or pending operation.
A list of persons/encounters is returned, either synchronously or using the callback.

	
identify(galleryID, filter, biometricData, callback, transactionID, options)

	Identify a person using biometrics data and filters on biographic or contextual data. This may include multiple
operations, including manual operations.

Authorization: abis.identify

	Parameters

	
	galleryID (str) – Search only in this gallery.

	filter (dict) – The input data (filters and biometric data)

	biometricData – the biometric data.

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A list of candidates is returned, either synchronously or using the callback.

	
identify(galleryID, filter, personID, callback, transactionID, options)

	Identify a person using biometrics data of a person existing in the system and filters on biographic or
contextual data. This may include multiple operations, including manual operations.

Authorization: abis.verify

	Parameters

	
	galleryID (str) – Search only in this gallery.

	filter (dict) – The input data (filters and biometric data)

	personID – the person ID

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A list of candidates is returned, either synchronously or using the callback.

	
verify(galleryID, personID, biometricData, callback, transactionID, options)

	Verify an identity using biometrics data.

Authorization: To be defined

	Parameters

	
	galleryID (str) – Search only in this gallery. If the person does not belong to this gallery,
an error is returned.

	personID (str) – The person ID

	biometricData – The biometric data

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority,
threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A status (boolean) is returned, either synchronously or using the callback. Optionally, details
about the matching result can be provided like the score per biometric and per encounter.

	
verify(biometricData1, biometricData2, callback, transactionID, options)

	Verify that two sets of biometrics data correspond to the same person.

Authorization: To be defined

	Parameters

	
	biometricData1 – The first set of biometric data

	biometricData2 – The second set of biometric data

	callback – The address of a service to be called when the result is available.

	transactionID (str) – A free text used to track the system activities related to the same transaction.

	options (dict) – the processing options. Supported options are priority,
threshold, accuracyLevel.

	Returns

	a status indicating success, error, or pending operation.
A status (boolean) is returned, either synchronously or using the callback. Optionally, details
about the matching result can be provided like the score per the biometric.

6.5.1.2. Options

Table 6.15 Biometric Services Options

	Name

	Description

	priority

	Priority of the request. Values range from 0 to 9

	maxNbCand

	The maximum number of candidates to return.

	threshold

	The threshold to apply on the score to filter the candidates during an identification,
authentication or verification.

	algorithm

	Specify the type of algorithm to be used.

	accuracyLevel

	Specify the accuracy expected of the request. This is to support different use cases, when
different behavior of the ABIS is expected (response time, accuracy, consolidation/fusion, etc.).

6.5.1.3. Data Model

Table 6.16 Biometric Data Model

	Type

	Description

	Example

	Gallery

	A group of persons related by a common purpose, designation, or status.
A person can belong to multiple galleries.

	TBD

	Person

	Person who is known to an identity assurance system.

	TBD

	Encounter

	Event in which the client application interacts with a person resulting in data being
collected during or about the encounter. An encounter is characterized by an identifier and a type
(also called purpose in some context).

An encounter has a status indicating if this encounter is used in the biometric searches. Allowed values
are active or inactive.

	TBD

	Biographic Data

	a dictionary (list of names and values) giving the biographic data of interest for the biometric services.

	TBD

	Filters

	a dictionary (list of names and values or range of values) describing the filters during a search.
Filters can apply on biographic data, contextual data or encounter type.

	TBD

	Biometric Data

	Digital representation of biometric characteristics.
All images can be passed by value (image buffer is in the request) or by reference (the address of the
image is in the request).
All images are compliant with ISO 19794. ISO 19794 allows multiple encoding and supports additional
metadata specific to fingerprint, palmprint, portrait or iris.

	fingerprint, portrait, iris

	Candidate

	Information about a candidate found during an identification

	TBD

	CandidateScore

	Detailed information about a candidate found during an identification. It includes
the score for the biometrics used. It can also be extended with proprietary information to better describe
the matching result (for instance: rotation needed to align the probe and the candidate)

	TBD

	Template

	A computed buffer corresponding to a biometric and allowing the comparison of biometrics.
A template has a format that can be a standard format or a vendor-specific format.

	N/A

[image: !include "skin.iwsd" class Gallery { string galleryID; } class Person { string personID; } class Encounter { string encounterID; string status; string encounterType; byte[] clientData; } Encounter "*" -- "*" Gallery Person o-- "*" Encounter class BiographicData { string field1; int field2; date field3; ... } Encounter o- BiographicData class ContextualData { string field1; int field2; date field3; ... } ContextualData -o Encounter class Filters { string filter1; int filter2Min; int filter2Max; date filter3Min; date filter3Max; ... } class BiometricData { byte[] image; URL imageRef; } Encounter o-- "*" BiometricData class Template { byte[] buffer; string format; } BiometricData -- Template class Candidate { int rank; int score; } Candidate . Person class CandidateScore { float score; string encounterID; enum biometricType; enum biometricSubType; ... } Candidate -- "*" CandidateScore]

Fig. 6.18 Biometric Data Model

6.6. Credential Management System

The credential management system component MAY implement the following interfaces:

6.6.1. Credential Services

This interface describes services to manage credentials and credential
requests in the context of an identity system.

6.6.1.1. Services

	
createCredentialRequest(personID, credentialProfileID, additionalData, transactionID)

	Request issuance of a secure credential.

Authorization: cms.request.write

	Parameters

	
	personID (str) – The ID of the person.

	credentialProfileID (str) – The ID of the credential profile to issue to the person.

	additionalData (dict) – Additional data relating to the requested credential profile,
e.g. credential lifetime if overriding default, delivery addresses, etc.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error. In the case of success, a credential request identifier.

	
readCredentialRequest(credentialRequestID, attributes, transactionID)

	Retrieve the data/status of a credential request.

Authorization: cms.request.read

	Parameters

	
	credentialRequestID (str) – The ID of the credential request.

	attributes (set) – The (optional) set of required attributes to retrieve.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, and in case of success the issuance data/status.

	
updateCredentialRequest(credentialRequestID, additionalData, transactionID)

	Update the requested issuance of a secure credential.

Authorization: cms.request.write

	Parameters

	
	credentialRequestID (str) – The ID of the credential request.

	transactionID (string) – The client generated transactionID.

	additionalData (dict) – Additional data relating to the requested credential profile,
e.g. credential lifetime if overriding default, delivery addresses, etc.

	Returns

	a status indicating success or error.

	
deleteCredentialRequest(credentialRequestID, transactionID)

	Delete/cancel the requested issuance of a secure credential.

Authorization: cms.request.write

	Parameters

	
	credentialRequestID (str) – The ID of the credential request.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
findCredentials(expressions, transactionID)

	Retrieve a list of credentials that match the passed in search criteria.

Authorization: To be defined

	Parameters

	
	expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator
(one of <, >, =, >=, <=) and the attribute value.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, in the case of success the
list of matching credentials.

	
readCredential(credentialID, attributes, transactionID)

	Retrieve the attributes/status of an issued credential. A wide range of
information may be returned, dependant on the type of credential that was
issued, smart card, mobile, passport, etc.

Authorization: cms.credential.read

	Parameters

	
	credentialID (str) – The ID of the credential.

	attributes (set) – The (optional) set of required attributes to retrieve.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, in the case of success the
requested data will be returned.

	
suspendCredential(credentialID, additionalData, transactionID)

	Suspend an issued credential. For electronic credentials this will suspend any
PKI certificates that are present.

Authorization: cms.credential.write

	Parameters

	
	credentialID (str) – The ID of the credential.

	additionalData (dict) – Additional data relating to the request,
e.g. reason for suspension.

	transactionID (string) – The (optional) client generated transactionID.

	Returns

	a status indicating success or error.

	
unsuspendCredential(credentialID, additionalData, transactionID)

	Unsuspend an issued credential. For electronic credentials this will unsuspend any
PKI certificates that are present.

Authorization: cms.credential.write

	Parameters

	
	credentialID (str) – The ID of the credential.

	additionalData (dict) – Additional data relating to the request,
e.g. reason for unsuspension.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
revokeCredential(credentialID, additionalData, transactionID)

	Revoke an issued credential. For electronic credentials this will revoke any
PKI certificates that are present.

Authorization: cms.credential.write

	Parameters

	
	credentialID (str) – The ID of the credential.

	additionalData (dict) – Additional data relating to the request,
e.g. reason for revocation.

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error.

	
findCredentialProfiles(expressions, transactionID)

	Retrieve the data/status of a credential request.

Authorization: To be defined

	Parameters

	
	expressions (list[(str,str,str)]) – The expressions to evaluate. Each expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=, !=) and the attribute value

	transactionID (string) – The client generated transactionID.

	Returns

	a status indicating success or error, and in case of success the matching credential profile list.

6.6.1.2. Attributes

The “attributes” parameter used in “read” calls is used to provide a set of
identifiers that limit the amount of data that is returned.
It is often the case that the whole data set is not required, but instead,
a subset of that data.
@@ -128,7 +128,7 @@ attributes to retrieve.

E.g. For surname/familyname, use OID 2.5.4.4 or id-at-surname.

Some calls may require new attributes to be defined. E.g. when
retrieving biometric data, the caller may only want the meta data about
that biometric, rather than the actual biometric data.

6.7. Third Party Services

The third party component MAY implement the following interfaces:

6.7.1. ID Usage

6.7.1.1. Services

	
verifyIdentity(UIN[, IDAttribute])

	Verify Identity based on UIN and set of Identity Attributes (biometric data, credential, etc.)

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	IDAttribute (list[str]) – A list of list of pair (name,value) requested

	Returns

	Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

	
identify([inIDAttribute][, outIDAttribute])

	Identify a person based on a set of Identity Attributes (biometric data, credential, etc.)

Authorization: To be defined

	Parameters

	
	inIDAttribute (list[str]) – A list of list of pair (name,value) requested

	outIDAttribute (list[str]) – A list of list of attribute names requested

	Returns

	Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

	
readAttributes(UIN, names)

	Read person attributes.

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	names (list[str]) – The names of the attributes requested

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.)
the value is replaced with an error

	
readAttributeSet(UIN, setName)

	Read person attributes corresponding to a predefined set name.

Authorization: To be defined

	Parameters

	
	UIN (str) – The person’s UIN

	setName (str) – The name of predefined attributes set name

	Returns

	a list of pair (name,value). In case of error (unknown attributes, unauthorized access, etc.)
the value is replaced with an error

7. Annexes

	7.1. Glossary

	7.2. Data Format

	7.3. Technical Specifications
	7.3.1. Notification
	7.3.1.1. Services
	7.3.1.1.1. Subscriber

	7.3.1.1.2. Publisher

	7.3.1.2. Notification Message

	7.3.2. UIN Management
	7.3.2.1. Services

	7.3.3. Data Access
	7.3.3.1. Services
	7.3.3.1.1. Person

	7.3.3.1.2. Document

	7.3.3.2. Data Model
	7.3.3.2.1. Person Attributes

	7.3.3.2.2. Matching Error

	7.3.3.2.3. Expression

	7.3.3.2.4. Error

	7.3.4. Enrollment
	7.3.4.1. Services
	7.3.4.1.1. Enrollment

	7.3.4.1.2. Buffer

	7.3.4.2. Data Model

	7.3.5. Population Registry Management
	7.3.5.1. Services
	7.3.5.1.1. Person

	7.3.5.1.2. Identity

	7.3.5.1.3. Reference

	7.3.5.1.4. Gallery

	7.3.5.2. Data Model

	7.3.6. Biometrics
	7.3.6.1. Services
	7.3.6.1.1. CRUD

	7.3.6.1.2. Search

	7.3.6.1.3. Gallery

	7.3.6.2. Data Model

	7.3.7. Third Party Services
	7.3.7.1. Services

7.1. Glossary

	ABIS

	Automated Biometric Identification System

	CR

	Civil Registry. The system in charge of the continuous, permanent, compulsory and universal recording
of the occurrence and characteristics of vital events pertaining to the population, as provided
through decree or regulation in accordance with the legal requirements in each country.

	CMS

	Credential Management System

	Credential

	A document, object, or data structure that vouches for the identity of a person through some method of
trust and authentication. Common types of identity credentials include - but are not limited to — ID cards,
certificates, numbers, passwords, or SIM cards. A biometric identifier can also be used as a credential
once it has been registered with the identity provider.

(Source: ID4D Practioner’s Guide [http://documents.worldbank.org/curated/en/248371559325561562/pdf/ID4D-Practitioner-s-Guide.pdf])

	Encounter

	Event in which the client application interacts with
a person resulting in data being collected during or
about the encounter. An encounter is characterized by
an identifier and a type (also called purpose in some
context).

(Source: ISO-30108-1)

	Functional systems and registries

	Managing data including voter rolls, land registry, vehicle registration, passport, residence registry,
education, health and benefits.

	HTTP Status Codes

	The HTTP Status Codes are used to indicate the status of the executed operation. The available status codes are
described by RFC 7231 [http://tools.ietf.org/html/rfc7231#section-6] and in the
IANA Status Code Registry [http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml].

	Mime Types

	Mime type definitions are spread across several resources. The mime type definitions should be in compliance with
RFC 6838 [http://tools.ietf.org/html/rfc6838].

Some examples of possible mime type definitions:

text/plain; charset=utf-8
application/json
application/vnd.github+json
application/vnd.github.v3+json
application/vnd.github.v3.raw+json
application/vnd.github.v3.text+json
application/vnd.github.v3.html+json
application/vnd.github.v3.full+json
application/vnd.github.v3.diff
application/vnd.github.v3.patch

	OSIA

	Open Standard Identity APIs

	PR

	Population Registry. The system in charge of the recording of selected information pertaining to each member
of the resident population of a country.

	UIN

	Unique Identity Number.

7.2. Data Format

TBD: Conventions about data format in the interface: json, standards for date, images; structure of biographic data

7.3. Technical Specifications

	7.3.1. Notification
	7.3.1.1. Services
	7.3.1.1.1. Subscriber

	7.3.1.1.2. Publisher

	7.3.1.2. Notification Message

	7.3.2. UIN Management
	7.3.2.1. Services

	7.3.3. Data Access
	7.3.3.1. Services
	7.3.3.1.1. Person

	7.3.3.1.2. Document

	7.3.3.2. Data Model
	7.3.3.2.1. Person Attributes

	7.3.3.2.2. Matching Error

	7.3.3.2.3. Expression

	7.3.3.2.4. Error

	7.3.4. Enrollment
	7.3.4.1. Services
	7.3.4.1.1. Enrollment

	7.3.4.1.2. Buffer

	7.3.4.2. Data Model

	7.3.5. Population Registry Management
	7.3.5.1. Services
	7.3.5.1.1. Person

	7.3.5.1.2. Identity

	7.3.5.1.3. Reference

	7.3.5.1.4. Gallery

	7.3.5.2. Data Model

	7.3.6. Biometrics
	7.3.6.1. Services
	7.3.6.1.1. CRUD

	7.3.6.1.2. Search

	7.3.6.1.3. Gallery

	7.3.6.2. Data Model

	7.3.7. Third Party Services
	7.3.7.1. Services

7.3.1. Notification

Get the OpenAPI file for this interface: notification.yaml

Notification Services

	
	create_topic

	list_topics

	delete_topic

	publish

	
	subscribe

	list_subscription

	unsubscribe

	confirm

7.3.1.1. Services

7.3.1.1.1. Subscriber

	
POST /v1/subscriptions

	Subscribe to a topic

Subscribes a client to receive event notification.

Subscriptions are idempotent. Subscribing twice for the same topic and
endpoint (protocol, address) will return the same subscription ID and the
subscriber will receive only once the notifications.

Scope required: notif.sub.write

	Query Parameters

	
	topic (string) – The name of the topic for which notifications will be sent
(Required)

	protocol (string) – The protocol used to send the notification

	address (string) – the endpoint address, where the notifications will be sent.
(Required)

	policy (string) – The delivery policy, expressing what happens when the message cannot be delivered.

If not specified, retry will be done every hour for 7 days.

The value is a set of integer separated by comma:

	countdown: the number of seconds to wait before retrying. Default: 3600.

	max: the maximum max number of retry. -1 indicates infinite retry. Default: 168

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Subscription successfully created. Waiting for confirmation message.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "uuid": "string",
 "topic": "string",
 "protocol": "http",
 "address": "string",
 "policy": "string",
 "active": true
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: onEvent

	
POST {$request.query.address}

	
	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Message received and processed.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

	Request Headers

	
	message-type – the type of the message
(Required)

	subscription-id – the unique ID of the subscription

	message-id – the unique ID of the message
(Required)

	topic-id – the unique ID of the topic
(Required)

Example request:

POST {$request.query.address} HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "type": "SubscriptionConfirmation",
 "token": "string",
 "topic": "string",
 "message": "string",
 "messageId": "string",
 "subject": "string",
 "subscribeURL": "https://example.com",
 "timestamp": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/subscriptions

	Get all subscriptions

Scope required: notif.sub.read

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Get all subscriptions

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/subscriptions HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "uuid": "string",
 "topic": "string",
 "protocol": "http",
 "address": "string",
 "policy": "string",
 "active": true
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
DELETE /v1/subscriptions/{uuid}

	Unsubscribe from a topic

Unsubscribes a client from receiving notifications for a topic

Scope required: notif.sub.write

	Parameters

	
	uuid (string) – the unique ID returned when the subscription was done

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Subscription successfully removed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Subscription not found

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/subscriptions/confirm

	Confirm the subscription

Confirm a subscription

Scope required: notif.sub.write

	Query Parameters

	
	token (string) – the token sent to the endpoint
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Subscription successfully confirmed

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid token

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/subscriptions/confirm?token=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.1.1.2. Publisher

	
POST /v1/topics

	Create a topic

Create a new topic. This service is idempotent.

Scope required: notif.topic.write

	Query Parameters

	
	name (string) – The topic name
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Topic was created.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "uuid": "string",
 "name": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/topics

	Get all topics

Scope required: notif.topic.read

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Get all topics

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/topics HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "uuid": "string",
 "name": "string"
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
DELETE /v1/topics/{uuid}

	Delete a topic

Delete a topic

Scope required: notif.topic.write

	Parameters

	
	uuid (string) – the unique ID returned when the topic was created

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Topic successfully removed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Topic not found

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/topics/{uuid}/publish

	Post a notification to a topic.

Scope required: notif.topic.publish

	Parameters

	
	uuid (string) – the unique ID of the topic

	Query Parameters

	
	subject (string) – the subject of the message.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Notification published

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.1.2. Notification Message

This section describes the messages exchanged through notification. All messages
are encoded in json. They are generated by the emitter (the source of the event)
and received by zero, one, or many receivers that have subscribed to the type of event.

Table 7.1 Event Type & Message

	Event Type

	Message

	liveBirth

	
	source: identification of the system emitting the event

	uin of the new born

	uin1 of the first parent (optional if parent is unknown)

	uin2 of the second parent (optional if parent is unknown)

Example:

{
 "source": "systemX",
 "uin": "123456789",
 "uin1": "123456789",
 "uin2": "234567890"
}

	death

	
	source: identification of the system emitting the event

	uin of the dead person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	birthCancellation

	
	source: identification of the system emitting the event

	uin of the person whose birth declaration is being cancelled

Example:

{
 "source": "systemX",
 "uin": "123456789",
}

	foetalDeath

	
	source: identification of the system emitting the event

	uin of the new born

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	marriage

	
	source: identification of the system emitting the event

	uin1 of the first conjoint

	uin2 of the second conjoint

Example:

{
 "source": "systemX",
 "uin1": "123456789",
 "uin2": "234567890"
}

	divorce

	
	source: identification of the system emitting the event

	uin1 of the first conjoint

	uin2 of the second conjoint

Example:

{
 "source": "systemX",
 "uin1": "123456789",
 "uin2": "234567890"
}

	annulment

	
	source: identification of the system emitting the event

	uin1 of the first conjoint

	uin2 of the second conjoint

Example:

{
 "source": "systemX",
 "uin1": "123456789",
 "uin2": "234567890"
}

	separation

	
	source: identification of the system emitting the event

	uin1 of the first conjoint

	uin2 of the second conjoint

Example:

{
 "source": "systemX",
 "uin1": "123456789",
 "uin2": "234567890"
}

	adoption

	
	source: identification of the system emitting the event

	uin of the child

	uin1 of the first parent

	uin2 of the second parent (optional)

Example:

{
 "source": "systemX",
 "uin": "123456789",
 "uin1": "234567890"
}

	legitimation

	
	source: identification of the system emitting the event

	uin of the child

	uin1 of the first parent

	uin2 of the second parent (optional)

Example:

{
 "source": "systemX",
 "uin": "987654321",
 "uin1": "123456789",
 "uin2": "234567890"
}

	recognition

	
	source: identification of the system emitting the event

	uin of the child

	uin1 of the first parent

	uin2 of the second parent (optional)

Example:

{
 "source": "systemX",
 "uin": "123456789",
 "uin2": "234567890"
}

	changeOfName

	
	source: identification of the system emitting the event

	uin of the person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	changeOfGender

	
	source: identification of the system emitting the event

	uin of the person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	updatePerson

	
	source: identification of the system emitting the event

	uin of the person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	newPerson

	
	source: identification of the system emitting the event

	uin of the person

Example:

{
 "source": "systemX",
 "uin": "123456789"
}

	duplicatePerson

	
	source: identification of the system emitting the event

	uin of the person to be kept

	duplicates: list of uin for records identified as duplicates

Example:

{
 "source": "systemX",
 "uin": "123456789",
 "duplicates": [
 "234567890",
 "345678901"
]
}

Note

Anonymized notification of events will be treated separately.

7.3.2. UIN Management

Get the OpenAPI file for this interface: uin.yaml

7.3.2.1. Services

	
POST /v1/uin

	Request the generation of a new UIN.

The request body should contain a list of attributes and their value, formatted as a json dictionary.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – UIN is generated

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error (See Error)

Example request:

POST http://server.com/v1/uin HTTP/1.1
Host: server.com
Content-Type: application/json

{
 "firstName": "John",
 "lastName": "Doo",
 "dateOfBirth": "1984-11-19"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

1235567890

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.3. Data Access

Get the OpenAPI file for this interface: dataaccess.yaml

Data Access Services

	
	queryPersonList

	readPersonAttributes

	matchPersonAttributes

	
	verifyPersonAttributes

	readDocument

7.3.3.1. Services

7.3.3.1.1. Person

	
GET /v1/persons

	Query for persons using a set of attributes. Retrieve the UIN or the person attributes.
This service is used when the UIN is unknown.
Example: http://registry.com/v1/persons?firstName=John&lastName=Do&names=firstName

Scope required: pr.person.read or cr.person.read

	Query Parameters

	
	attributes (object) – The attributes (names and values) used to query
(Required)

	names (array) – The names of the attributes to return. If not provided, only the UIN is returned

	max (number) – The maximum number of records to return. Default is 10

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The requested attributes for all found persons (a list of at least one entry).
If no names are given, a flat list of UIN is returned. If at least one name is given, a list of dictionaries (one dictionary per record) is returned.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid parameter

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – No record found

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/persons?firstName=John&lastName=Do HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 "string"
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/persons/{uin}

	Read attributes for a person. Example: http://registry.com/v1/persons/123456789?attributeNames=firstName&attributeNames=lastName&attributeNames=dob

Scope required: pr.person.read or cr.person.read

	Parameters

	
	uin (string) – Unique Identity Number

	Query Parameters

	
	attributeNames (array) – The names of the attributes requested for this person
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Requested attributes values or error description.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/persons/{uin}?attributeNames=%5B%27string%27%5D HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "firstName": "John",
 "lastName": "Doo",
 "dob": {
 "code": 1023,
 "message": "Unknown attribute name"
 }
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/persons/{uin}/match

	Match person attributes.
This service is used to check the value of attributes without exposing private data.

The request body should contain a list of attributes and their value, formatted as a json dictionary.

Scope required: pr.person.match or cr.person.match

	Parameters

	
	uin (string) – Unique Identity Number

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Information about non matching attributes. Returns a list of matching result.
An empty list indicates all attributes were matching.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/persons/{uin}/match HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "firstName": "John",
 "lastName": "Doo",
 "dateOfBirth": "1984-11-19"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "attributeName": "firstName",
 "errorCode": 1
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/persons/{uin}/verify

	Evaluate expressions on person attributes.
This service is used to evaluate simple expressions on
person’s attributes without exposing private data

The request body should contain a list of expressions.

Scope required: pr.person.verify or cr.person.verify

	Parameters

	
	uin (string) – Unique Identity Number

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The expressions are all true (true is returned) or one is false (false is returned)

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access. The service is forbidden or one of the attributes is forbidden.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/persons/{uin}/verify HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

[
 {
 "attributeName": "firstName",
 "operator": "=",
 "value": "John"
 },
 {
 "attributeName": "dateOfBirth",
 "operator": "<",
 "value": "1990-12-31"
 }
]

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

true

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.3.1.2. Document

	
GET /v1/persons/{uin}/document

	Read in an unstructured format (PDF, image) a document such as a marriage certificate.
Example: http://registry.com/v1/persons/123456789/document?doctype=marriage&secondaryUin=234567890&format=pdf

Scope required: pr.document.read or cr.document.read

	Parameters

	
	uin (string) – Unique Identity Number

	Query Parameters

	
	secondaryUin (string) – Unique Identity Number of a second person linked to the requested document.
Example: wife, husband

	doctype (string) – The type of document
(Required)

	format (string) – The expected format of the document.
If the document is not available at this format, it must be converted.
TBD: one format for certificate data.
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The document(s) is/are found and returned, as binary data in a MIME multipart structure.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Client must be authenticated

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Service forbidden

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown uin

	415 Unsupported Media Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16] – Unsupported format

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/persons/{uin}/document?doctype=string&format=pdf HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.3.2. Data Model

7.3.3.2.1. Person Attributes

When exchanged in the services described in this document, the persons attributes
will apply the following rules:

Table 7.2 Person Attributes

	Attribute Name

	Description

	Format

	uin

	Unique Identity Number

	Text

	firstName

	First name

	Text

	lastName

	Last name

	Text

	spouseName

	Spouse name

	Text

	dateOfBirth

	Date of birth

	Date (iso8601). Example: 1987-11-17

	placeOfBirth

	Place of birth

	Text

	gender

	Gender

	Number (iso5218). One of 0 (Not known), 1 (Male), 2 (Female), 9 (Not applicable)

	dateOfDeath

	Date of death

	Date (iso8601). Example: 2018-11-17

	placeOfDeath

	Place of death

	Text

	reasonOfDeath

	Reason of death

	Text

	status

	Status. Example: missing, wanted, dead, etc.

	Text

7.3.3.2.2. Matching Error

A list of:

Table 7.3 Matching Error Object

	Attribute

	Type

	Description

	Mandatory

	attributeName

	String

	Attribute name (See Person Attributes)

	Yes

	errorCode

	32 bits integer

	Error code. Possible values: 0 (attribute does not exist); 1 (attribute exists but does not match)

	Yes

7.3.3.2.3. Expression

Table 7.4 Expression Object

	Attribute

	Type

	Description

	Mandatory

	attributeName

	String

	Attribute name (See Person Attributes)

	Yes

	operator

	String

	Operator to apply. Possible values: <, >, =, >=, <=

	Yes

	value

	string, or integer, or boolean

	The value to be evaluated

	Yes

7.3.3.2.4. Error

Table 7.5 Error Object

	Attribute

	Type

	Description

	Mandatory

	code

	32 bits integer

	Error code

	Yes

	message

	String

	Error message

	Yes

7.3.4. Enrollment

Get the OpenAPI file for this interface: enrollment.yaml

Enrollment Services

	
	createEnrollment

	readEnrollment

	updateEnrollment

	partialUpdateEnrollment

	deleteEnrollment

	
	finalizeEnrollment

	findEnrollments

	sendBuffer

	getBuffer

7.3.4.1. Services

7.3.4.1.1. Enrollment

	
POST /v1/enrollments/{enrollmentId}

	Create one enrollment

Scope required: enroll.write

	Parameters

	
	enrollmentId (string) – the id of the enrollment

	Query Parameters

	
	finalize (boolean) – Flag to indicate that data was collected (default is false).

	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – Operation successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Operation not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/enrollments/{enrollmentId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "enrollmentId": "string",
 "status": "FINALIZED",
 "enrollmentType": "string",
 "enrollmentFlags": [
 {
 "timeout": 3600,
 "other": "other"
 }
],
 "requestData": [
 {
 "requestType": "IDCARD_ISSUANCE",
 "deliveryPlace": "paris",
 "other": "other"
 }
],
 "biographicData": {
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "mimetype": "string",
 "resolution": 1,
 "compression": "NONE"
 }
],
 "documentData": [
 {
 "documentType": "ID_CARD",
 "instance": "string",
 "parts": [
 {
 "pages": [
 1
],
 "data": "c3RyaW5n",
 "dataRef": "https://example.com",
 "width": 1,
 "height": 1,
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "mimetype": "string"
 }
]
 }
]
}

Example response:

HTTP/1.1 201 Created
Content-Type: application/json

{
 "enrollmentId": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/enrollments/{enrollmentId}

	Read one enrollment

Scope required: enroll.read

	Parameters

	
	enrollmentId (string) – the id of the enrollment

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	attributes (array) – The (optional) set of required attributes to retrieve. If not present all attributes will be returned.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Read successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/enrollments/{enrollmentId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "enrollmentId": "string",
 "status": "FINALIZED",
 "enrollmentType": "string",
 "enrollmentFlags": [
 {
 "timeout": 3600,
 "other": "other"
 }
],
 "requestData": [
 {
 "requestType": "IDCARD_ISSUANCE",
 "deliveryPlace": "paris",
 "other": "other"
 }
],
 "biographicData": {
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "mimetype": "string",
 "resolution": 1,
 "compression": "NONE"
 }
],
 "documentData": [
 {
 "documentType": "ID_CARD",
 "instance": "string",
 "parts": [
 {
 "pages": [
 1
],
 "data": "c3RyaW5n",
 "dataRef": "https://example.com",
 "width": 1,
 "height": 1,
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "mimetype": "string"
 }
]
 }
]
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
PUT /v1/enrollments/{enrollmentId}

	Update one enrollment

Scope required: enroll.write

	Parameters

	
	enrollmentId (string) – the id of the enrollment

	Query Parameters

	
	finalize (boolean) – Flag to indicate that data was collected (default is false).

	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Update successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Update not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

PUT /v1/enrollments/{enrollmentId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "enrollmentId": "string",
 "status": "FINALIZED",
 "enrollmentType": "string",
 "enrollmentFlags": [
 {
 "timeout": 3600,
 "other": "other"
 }
],
 "requestData": [
 {
 "requestType": "IDCARD_ISSUANCE",
 "deliveryPlace": "paris",
 "other": "other"
 }
],
 "biographicData": {
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "mimetype": "string",
 "resolution": 1,
 "compression": "NONE"
 }
],
 "documentData": [
 {
 "documentType": "ID_CARD",
 "instance": "string",
 "parts": [
 {
 "pages": [
 1
],
 "data": "c3RyaW5n",
 "dataRef": "https://example.com",
 "width": 1,
 "height": 1,
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "mimetype": "string"
 }
]
 }
]
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
PATCH /v1/enrollments/{enrollmentId}

	Update partially one enrollment

Update partially an enrollment. Payload content is a partial enrollment object compliant with RFC7396.

Scope required: enroll.write

	Parameters

	
	enrollmentId (string) – the id of the enrollment

	Query Parameters

	
	finalize (boolean) – Flag to indicate that data was collected (default is false).

	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Update successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Update not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

PATCH /v1/enrollments/{enrollmentId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "enrollmentId": "string",
 "status": "FINALIZED",
 "enrollmentType": "string",
 "enrollmentFlags": [
 {
 "timeout": 3600,
 "other": "other"
 }
],
 "requestData": [
 {
 "requestType": "IDCARD_ISSUANCE",
 "deliveryPlace": "paris",
 "other": "other"
 }
],
 "biographicData": {
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "mimetype": "string",
 "resolution": 1,
 "compression": "NONE"
 }
],
 "documentData": [
 {
 "documentType": "ID_CARD",
 "instance": "string",
 "parts": [
 {
 "pages": [
 1
],
 "data": "c3RyaW5n",
 "dataRef": "https://example.com",
 "width": 1,
 "height": 1,
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "mimetype": "string"
 }
]
 }
]
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
DELETE /v1/enrollments/{enrollmentId}

	Delete one enrollment

Scope required: enroll.write

	Parameters

	
	enrollmentId (string) – the id of the enrollment

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Delete successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Operation not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
PUT /v1/enrollments/{enrollmentId}/finalize

	Finalize one enrollment

Scope required: enroll.write

	Parameters

	
	enrollmentId (string) – the id of the enrollment

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Update successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Update not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/enrollments

	Retrieve a list of enrollments which match passed in search criteria

Scope required: enroll.read

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Read successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/enrollments?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

[
 {
 "attributeName": "firstName",
 "operator": "=",
 "value": "John"
 },
 {
 "attributeName": "dateOfBirth",
 "operator": "<",
 "value": "1990-12-31"
 }
]

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "enrollmentId": "string",
 "status": "FINALIZED",
 "enrollmentType": "string",
 "enrollmentFlags": [
 {
 "timeout": 3600,
 "other": "other"
 }
],
 "requestData": [
 {
 "requestType": "IDCARD_ISSUANCE",
 "deliveryPlace": "paris",
 "other": "other"
 }
],
 "biographicData": {
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "mimetype": "string",
 "resolution": 1,
 "compression": "NONE"
 }
],
 "documentData": [
 {
 "documentType": "ID_CARD",
 "instance": "string",
 "parts": [
 {
 "pages": [
 1
],
 "data": "c3RyaW5n",
 "dataRef": "https://example.com",
 "width": 1,
 "height": 1,
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "mimetype": "string"
 }
]
 }
]
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.4.1.2. Buffer

	
POST /v1/enrollments/{enrollmentId}/buffer

	This service is used to send separately the buffers of the images

Scope required: enroll.buf.write

	Parameters

	
	enrollmentId (string) – the id of the enrollment

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – Operation successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Update not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 201 Created
Content-Type: application/json

{
 "bufferId": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/enrollments/{enrollmentId}/buffer/{bufferId}

	This service is used to get the buffer of the images

Scope required: enroll.buf.read

	Parameters

	
	enrollmentId (string) – the id of the enrollment

	bufferId (string) – the id of the buffer

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Read successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Update not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/enrollments/{enrollmentId}/buffer/{bufferId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.4.2. Data Model

To be completed

7.3.5. Population Registry Management

Get the OpenAPI file for this interface: pr.yaml

Population Registry Services

	
	createPerson

	readPerson

	updatePerson

	deletePerson

	mergePerson

	readIdentities

	createIdentity

	createIdentityWithId

	readIdentity

	
	updateIdentity

	partialUpdateIdentity

	deleteIdentity

	setIdentityStatus

	defineReference

	readReference

	readGalleries

	readGalleryContent

7.3.5.1. Services

7.3.5.1.1. Person

	
POST /v1/persons/{personId}

	Create one person

Scope required: pr.person.write

	Parameters

	
	personId (string) – the id of the person

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – Operation successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Operation not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/persons/{personId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "personId": "string",
 "status": "ACTIVE",
 "physicalStatus": "DEAD"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/persons/{personId}

	Read one person

Scope required: pr.person.read

	Parameters

	
	personId (string) – the id of the person

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Read successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/persons/{personId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "personId": "string",
 "status": "ACTIVE",
 "physicalStatus": "DEAD"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
PUT /v1/persons/{personId}

	Update one person

Scope required: pr.person.write

	Parameters

	
	personId (string) – the id of the person

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Update successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Update not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

PUT /v1/persons/{personId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "personId": "string",
 "status": "ACTIVE",
 "physicalStatus": "DEAD"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
DELETE /v1/persons/{personId}

	Delete a person and all its identities

Scope required: pr.person.write

	Parameters

	
	personId (string) – the id of the person

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Delete successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Delete not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/persons/{personIdTarget}/merge/{personIdSource}

	Merge two persons

Merge two person records into a single one. Identity ID are preserved and in case of duplicates
an error is returned and no changes are done.
If the operation is successful, the person merged is deleted.

Scope required: pr.person.write

	Parameters

	
	personIdTarget (string) – the id of the person receiving new identities

	personIdSource (string) – the id of the person giving the identities

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Merge successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Merge not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.5.1.2. Identity

	
GET /v1/persons/{personId}/identities

	Read all the identities of a person

Scope required: pr.identity.read

	Parameters

	
	personId (string) – the id of the person

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Operation successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Operation not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/persons/{personId}/identities?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "identityId": "string",
 "status": "CLAIMED",
 "galleries": [
 "string"
],
 "clientData": "c3RyaW5n",
 "contextualData": {
 "enrollmentDate": "2019-01-11"
 },
 "biographicData": {
 "firstName": "John",
 "lastName": "Doo",
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
],
 "documents": [
 {
 "documentType": "ID_CARD",
 "instance": "string",
 "parts": [
 {
 "pages": [
 1
],
 "data": "c3RyaW5n",
 "dataRef": "https://example.com",
 "width": 1,
 "height": 1,
 "format": "NONE",
 "captureDate": "2020-06-16",
 "captureDevice": "string"
 }
]
 }
]
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/persons/{personId}/identities

	Create one identity and generate its id

Scope required: pr.identity.write

	Parameters

	
	personId (string) – the id of the person

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Insertion successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Insertion not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/persons/{personId}/identities?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "identityId": "string",
 "status": "CLAIMED",
 "galleries": [
 "string"
],
 "clientData": "c3RyaW5n",
 "contextualData": {
 "enrollmentDate": "2019-01-11"
 },
 "biographicData": {
 "firstName": "John",
 "lastName": "Doo",
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
],
 "documents": [
 {
 "documentType": "ID_CARD",
 "instance": "string",
 "parts": [
 {
 "pages": [
 1
],
 "data": "c3RyaW5n",
 "dataRef": "https://example.com",
 "width": 1,
 "height": 1,
 "format": "NONE",
 "captureDate": "2020-06-16",
 "captureDevice": "string"
 }
]
 }
]
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "identityId": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/persons/{personId}/identities/{identityId}

	Create one identity

Create one new identity for a person. The provided identityId is
checked for validity and used for the new identity.

Scope required: pr.identity.write

	Parameters

	
	personId (string) – the id of the person

	identityId (string) – the id of the identity

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – Insertion successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Insertion not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/persons/{personId}/identities/{identityId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "identityId": "string",
 "status": "CLAIMED",
 "galleries": [
 "string"
],
 "clientData": "c3RyaW5n",
 "contextualData": {
 "enrollmentDate": "2019-01-11"
 },
 "biographicData": {
 "firstName": "John",
 "lastName": "Doo",
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
],
 "documents": [
 {
 "documentType": "ID_CARD",
 "instance": "string",
 "parts": [
 {
 "pages": [
 1
],
 "data": "c3RyaW5n",
 "dataRef": "https://example.com",
 "width": 1,
 "height": 1,
 "format": "NONE",
 "captureDate": "2020-06-16",
 "captureDevice": "string"
 }
]
 }
]
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/persons/{personId}/identities/{identityId}

	Read one identity

Scope required: pr.identity.read

	Parameters

	
	personId (string) – the id of the person

	identityId (string) – the id of the identity

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Read successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/persons/{personId}/identities/{identityId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "identityId": "string",
 "status": "CLAIMED",
 "galleries": [
 "string"
],
 "clientData": "c3RyaW5n",
 "contextualData": {
 "enrollmentDate": "2019-01-11"
 },
 "biographicData": {
 "firstName": "John",
 "lastName": "Doo",
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
],
 "documents": [
 {
 "documentType": "ID_CARD",
 "instance": "string",
 "parts": [
 {
 "pages": [
 1
],
 "data": "c3RyaW5n",
 "dataRef": "https://example.com",
 "width": 1,
 "height": 1,
 "format": "NONE",
 "captureDate": "2020-06-16",
 "captureDevice": "string"
 }
]
 }
]
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
PUT /v1/persons/{personId}/identities/{identityId}

	Update one identity

Scope required: pr.identity.write

	Parameters

	
	personId (string) – the id of the person

	identityId (string) – the id of the identity

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Update successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Update not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

PUT /v1/persons/{personId}/identities/{identityId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "identityId": "string",
 "status": "CLAIMED",
 "galleries": [
 "string"
],
 "clientData": "c3RyaW5n",
 "contextualData": {
 "enrollmentDate": "2019-01-11"
 },
 "biographicData": {
 "firstName": "John",
 "lastName": "Doo",
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
],
 "documents": [
 {
 "documentType": "ID_CARD",
 "instance": "string",
 "parts": [
 {
 "pages": [
 1
],
 "data": "c3RyaW5n",
 "dataRef": "https://example.com",
 "width": 1,
 "height": 1,
 "format": "NONE",
 "captureDate": "2020-06-16",
 "captureDevice": "string"
 }
]
 }
]
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
PATCH /v1/persons/{personId}/identities/{identityId}

	Update partially one identity

Update partially an identity. Payload content is a partial identity object compliant with RFC7396.

Scope required: pr.identity.write

	Parameters

	
	personId (string) – the id of the person

	identityId (string) – the id of the identity

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Update successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Update not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

PATCH /v1/persons/{personId}/identities/{identityId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "galleries": [
 "G1",
 "G2"
],
 "biographicData": {
 "gender": null,
 "nationality": "FRA"
 }
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
DELETE /v1/persons/{personId}/identities/{identityId}

	Delete one identity

Scope required: pr.identity.write

	Parameters

	
	personId (string) – the id of the person

	identityId (string) – the id of the identity

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Delete successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Delete not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
PUT /v1/persons/{personId}/identities/{identityId}/status

	Change the status of an identity

Scope required: pr.identity.write

	Parameters

	
	personId (string) – the id of the person

	identityId (string) – the id of the identity

	Query Parameters

	
	status (string) – The status of the identity
(Required)

	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Operation successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Operation not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.5.1.3. Reference

	
PUT /v1/persons/{personId}/identities/{identityId}/reference

	Define the reference

Scope required: pr.reference.write

	Parameters

	
	personId (string) – the id of the person

	identityId (string) – the id of the identity

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Operation successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Operation not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/persons/{personId}/reference

	Read the reference

Scope required: pr.reference.read

	Parameters

	
	personId (string) – the id of the person

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Read successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/persons/{personId}/reference?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "identityId": "string",
 "status": "CLAIMED",
 "galleries": [
 "string"
],
 "clientData": "c3RyaW5n",
 "contextualData": {
 "enrollmentDate": "2019-01-11"
 },
 "biographicData": {
 "firstName": "John",
 "lastName": "Doo",
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
],
 "documents": [
 {
 "documentType": "ID_CARD",
 "instance": "string",
 "parts": [
 {
 "pages": [
 1
],
 "data": "c3RyaW5n",
 "dataRef": "https://example.com",
 "width": 1,
 "height": 1,
 "format": "NONE",
 "captureDate": "2020-06-16",
 "captureDevice": "string"
 }
]
 }
]
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.5.1.4. Gallery

	
GET /v1/galleries

	Read the ID of all the galleries

Scope required: pr.gallery.read

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Operation successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/galleries?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 "string"
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/galleries/{galleryId}

	Read the content of one gallery

Scope required: pr.gallery.read

	Parameters

	
	galleryId (string) – the id of the gallery

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Operation successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/galleries/{galleryId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "personId": "string",
 "identityId": "string"
 }
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.5.2. Data Model

To be completed

7.3.6. Biometrics

Get the OpenAPI file for this interface: abis.yaml

Biometrics Services

	
	createEncounterNoIds

	createEncounterNoId

	readAllEncounters

	createEncounter

	readEncounter

	updateEncounter

	deleteEncounter

	mergeEncounter

	updateEncounterStatus

	
	readTemplate

	deleteAll

	identify

	identifyFromId

	verifyFromId

	verifyFromBio

	readGalleries

	readGalleryContent

7.3.6.1. Services

7.3.6.1.1. CRUD

	
POST /v1/persons

	Create one encounter and generate ID for both the person and the encounter

Scope required: abis.encounter.write

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	algorithm (string) – Hint about the algorithm to be used

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Operation successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Operation not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/persons?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "encounterId": "string",
 "status": "ACTIVE",
 "encounterType": "string",
 "galleries": [
 "string"
],
 "clientData": "c3RyaW5n",
 "contextualData": {
 "date": "2019-01-11"
 },
 "biographicData": {
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "personId": "string",
 "encounterId": "string"
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: createResponse

	
POST ${request.query.callback}

	Create one encounter and generate both IDs response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "personId": "string",
 "encounterId": "string"
}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/persons/{personId}/encounters

	Create one encounter and generate its ID

Create one encounter in the person identified by his/her id.
If the person does not yet exist, it is created automatically.

Scope required: abis.encounter.write

	Parameters

	
	personId (string) – the id of the person

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	algorithm (string) – Hint about the algorithm to be used

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – creation successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Creation not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/persons/{personId}/encounters?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "encounterId": "string",
 "status": "ACTIVE",
 "encounterType": "string",
 "galleries": [
 "string"
],
 "clientData": "c3RyaW5n",
 "contextualData": {
 "date": "2019-01-11"
 },
 "biographicData": {
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "personId": "string",
 "encounterId": "string"
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: createResponse

	
POST ${request.query.callback}

	Create one encounter and generate its ID response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "personId": "string",
 "encounterId": "string"
}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/persons/{personId}/encounters

	Read all encounters of one person

Scope required: abis.encounter.read

	Parameters

	
	personId (string) – the id of the person

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Read successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/persons/{personId}/encounters?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "encounterId": "string",
 "status": "ACTIVE",
 "encounterType": "string",
 "galleries": [
 "string"
],
 "clientData": "c3RyaW5n",
 "contextualData": {
 "date": "2019-01-11"
 },
 "biographicData": {
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
 }
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: readAllResponse

	
POST ${request.query.callback}

	Read all encounters response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
 {
 "encounterId": "string",
 "status": "ACTIVE",
 "encounterType": "string",
 "galleries": [
 "string"
],
 "clientData": "c3RyaW5n",
 "contextualData": {
 "date": "2019-01-11"
 },
 "biographicData": {
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
 }
]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/persons/{personId}/encounters/{encounterId}

	Create one encounter

Create one encounter in the person identified by his/her id.
If the person does not yet exist, it is created automatically.

If the encounter already exists, an error 403 is returned.

Scope required: abis.encounter.write

	Parameters

	
	personId (string) – the id of the person

	encounterId (string) – the id of the encounter

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	algorithm (string) – Hint about the algorithm to be used

	Status Codes

	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – Creation successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Creation not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/persons/{personId}/encounters/{encounterId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "encounterId": "string",
 "status": "ACTIVE",
 "encounterType": "string",
 "galleries": [
 "string"
],
 "clientData": "c3RyaW5n",
 "contextualData": {
 "date": "2019-01-11"
 },
 "biographicData": {
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: createResponse

	
POST ${request.query.callback}

	Create one encounter response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "personId": "string",
 "encounterId": "string"
}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/persons/{personId}/encounters/{encounterId}

	Read one encounter

Scope required: abis.encounter.read

	Parameters

	
	personId (string) – the id of the person

	encounterId (string) – the id of the encounter

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Read successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/persons/{personId}/encounters/{encounterId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "encounterId": "string",
 "status": "ACTIVE",
 "encounterType": "string",
 "galleries": [
 "string"
],
 "clientData": "c3RyaW5n",
 "contextualData": {
 "date": "2019-01-11"
 },
 "biographicData": {
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: readResponse

	
POST ${request.query.callback}

	Read one encounter response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "encounterId": "string",
 "status": "ACTIVE",
 "encounterType": "string",
 "galleries": [
 "string"
],
 "clientData": "c3RyaW5n",
 "contextualData": {
 "date": "2019-01-11"
 },
 "biographicData": {
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
PUT /v1/persons/{personId}/encounters/{encounterId}

	Update one encounter

Scope required: abis.encounter.write

	Parameters

	
	personId (string) – the id of the person

	encounterId (string) – the id of the encounter

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	algorithm (string) – Hint about the algorithm to be used

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Update successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Update not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

PUT /v1/persons/{personId}/encounters/{encounterId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "encounterId": "string",
 "status": "ACTIVE",
 "encounterType": "string",
 "galleries": [
 "string"
],
 "clientData": "c3RyaW5n",
 "contextualData": {
 "date": "2019-01-11"
 },
 "biographicData": {
 "dateOfBirth": "1985-11-30",
 "gender": "M",
 "nationality": "FRA"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: updateResponse

	
POST ${request.query.callback}

	Update one encounter response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
DELETE /v1/persons/{personId}/encounters/{encounterId}

	Delete one encounter

Delete one encounter from the person identified by his/her id.
If this is the last encounter in the person, the person is also deleted.

Scope required: abis.encounter.write

	Parameters

	
	personId (string) – the id of the person

	encounterId (string) – the id of the encounter

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Delete successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Delete not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: deleteResponse

	
POST ${request.query.callback}

	Delete one encounter response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/persons/{personIdTarget}/merge/{personIdSource}

	Merge two sets of encounters

Merge two sets of encounters into a single one. Encounter ID are preserved and in case of duplicates
an error is returned and no changes are done.

Scope required: abis.encounter.write

	Parameters

	
	personIdTarget (string) – the id of the person receiving new encounters

	personIdSource (string) – the id of the person giving the encounters

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Merge successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Merge not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: mergeResponse

	
POST ${request.query.callback}

	Merge two persons response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
PUT /persons/{personId}/encounters/{encounterId}/status

	Update status of an encounter

Scope required: abis.encounter.write

	Parameters

	
	personId (string) – the id of the person

	encounterId (string) – the id of the encounter

	Query Parameters

	
	status (string) – New status of encounter
(Required)

	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Status has been updated

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Encounter status update not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: updateEncounterStatusResponse

	
POST ${request.query.callback}

	Update encounter status response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/persons/{personId}/encounters/{encounterId}/templates

	Read biometrics templates

Scope required: abis.encounter.read

	Parameters

	
	personId (string) – the id of the person

	encounterId (string) – the id of the encounter

	Query Parameters

	
	biometricType (string) – the type of biometrics to return

	biometricSubType (string) – the sub-type of biometrics to return

	templateFormat (string) – the format of the template to return

	qualityFormat (string) – the format of the quality to return

	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Operation successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record or unkown biometrics

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/persons/{personId}/encounters/{encounterId}/templates?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "template": "c3RyaW5n",
 "templateFormat": "string",
 "quality": 1,
 "qualityFormat": "string",
 "vendor": "string",
 "algorithm": "string"
 }
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: readTemplateResponse

	
POST ${request.query.callback}

	Read biometrics templates response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "template": "c3RyaW5n",
 "templateFormat": "string",
 "quality": 1,
 "qualityFormat": "string",
 "vendor": "string",
 "algorithm": "string"
 }
]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
DELETE /v1/persons/{personId}

	Delete a person and all its encounters

Scope required: abis.encounter.write

	Parameters

	
	personId (string) – the id of the person

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Delete successful

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Delete not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: deleteResponse

	
POST ${request.query.callback}

	Delete a person response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.6.1.2. Search

	
POST /v1/identify/{galleryId}

	Biometric identification

Identification based on biometric data from one gallery

Scope required: abis.identify

	Parameters

	
	galleryId (string) – the id of the gallery

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	maxNbCand (integer) – the maximum number of candidates

	threshold (number) – the algorithm threshold

	accuracyLevel (string) – the accuracy level expected for this request

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Request executed. Identification result is returned.

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Identification not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/identify/{galleryId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "filter": {
 "dateOfBirthMin": "1980-01-01",
 "dateOfBirthMax": "2019-12-31"
 },
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "personId": "string",
 "rank": 1,
 "score": 1.0,
 "scoreList": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
 }
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: identifyResponse

	
POST ${request.query.callback}

	Biometric identification response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
 {
 "personId": "string",
 "rank": 1,
 "score": 1.0,
 "scoreList": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
 }
]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/identify/{galleryId}/{personId}

	Biometric identification based on existing data

Identification based on existing data from one gallery

Scope required: abis.identify

	Parameters

	
	galleryId (string) – the id of the gallery

	personId (string) – the id of the person

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	maxNbCand (integer) – the maximum number of candidates

	threshold (number) – the algorithm threshold

	accuracyLevel (string) – the accuracy level expected for this request

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Request executed. Identification result is returned.

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Identification not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/identify/{galleryId}/{personId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "dateOfBirthMin": "1980-01-01",
 "dateOfBirthMax": "2019-12-31"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "personId": "string",
 "rank": 1,
 "score": 1.0,
 "scoreList": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
 }
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: identifyResponse

	
POST ${request.query.callback}

	Biometric identification based on existing data response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
 {
 "personId": "string",
 "rank": 1,
 "score": 1.0,
 "scoreList": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
 }
]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/verify/{galleryId}/{personId}

	Biometric verification

Verification of one set of biometric data and a record in the system

Scope required: abis.verify

	Parameters

	
	galleryId (string) – the id of the gallery

	personId (string) – the id of the person

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	threshold (number) – the algorithm threshold

	accuracyLevel (string) – the accuracy level expected for this request

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Verification execution successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Verification not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/verify/{galleryId}/{personId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "biometricData": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "decision": true,
 "scores": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: verifyResponse

	
POST ${request.query.callback}

	Biometric verification response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "decision": true,
 "scores": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
POST /v1/verify

	Biometric verification with two sets of data

Verification of two sets of biometric data

Scope required: abis.verify

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	threshold (number) – the algorithm threshold

	accuracyLevel (string) – the accuracy level expected for this request

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Verification execution successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Verification not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST /v1/verify?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
 "biometricData1": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
],
 "biometricData2": [
 {
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN",
 "image": "c3RyaW5n",
 "imageRef": "https://example.com",
 "captureDate": "2020-06-16",
 "captureDevice": "string",
 "impressionType": "LIVE_SCAN_PLAIN",
 "width": 1,
 "height": 1,
 "bitdepth": 1,
 "resolution": 1,
 "compression": "NONE"
 }
]
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "decision": true,
 "scores": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: verifyResponse

	
POST ${request.query.callback}

	Biometric verification with two sets of data response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "decision": true,
 "scores": [
 {
 "score": 1.0,
 "encounterId": "string",
 "biometricType": "FACE",
 "biometricSubType": "UNKNOWN"
 }
]
}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.6.1.3. Gallery

	
GET /v1/galleries

	Read the ID of all the galleries

Scope required: abis.gallery.read

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Operation successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/galleries?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 "string"
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: readGalleriesResponse

	
POST ${request.query.callback}

	Read the ID of all the galleries response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
 "string"
]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

	
GET /v1/galleries/{galleryId}

	Read the content of one gallery

Scope required: abis.gallery.read

	Parameters

	
	galleryId (string) – the id of the gallery

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	callback (string) – the callback address, where the result will be sent when available

	priority (integer) – the request priority

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Operation successful

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Request received successfully and correct, result will be returned through the callback.
The transaction ID is returned

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Read not allowed

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown record

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

GET /v1/galleries/{galleryId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "personId": "string",
 "encounterId": "string"
 }
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

"123e4567-e89b-12d3-a456-426655440000"

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

Callback: readGalleryContentResponse

	
POST ${request.query.callback}

	Read the content of one gallery response callback

	Query Parameters

	
	transactionId (string) – The id of the transaction
(Required)

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Response is received and accepted.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden access to the service

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
 {
 "personId": "string",
 "encounterId": "string"
 }
]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
 "code": 1,
 "message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "code": 1,
 "message": "string"
}

7.3.6.2. Data Model

To be completed

7.3.7. Third Party Services

7.3.7.1. Services

To be defined

 HTTP Routing Table

 /${request.query.callback} |
 /persons |
 /v1 |
 /{$request.query.address}

 		 	

 		
 /${request.query.callback}	

 	
 	
 POST ${request.query.callback}	
 Read the content of one gallery response callback

 		 	

 		
 /persons	

 	
 	
 PUT /persons/{personId}/encounters/{encounterId}/status	
 Update status of an encounter

 		 	

 		
 /v1	

 	
 	
 GET /v1/enrollments/{enrollmentId}	
 Read one enrollment

 	
 	
 GET /v1/enrollments/{enrollmentId}/buffer/{bufferId}	
 This service is used to get the buffer of the images

 	
 	
 GET /v1/galleries	
 Read the ID of all the galleries

 	
 	
 GET /v1/galleries/{galleryId}	
 Read the content of one gallery

 	
 	
 GET /v1/persons	
 null

 	
 	
 GET /v1/persons/{personId}	
 Read one person

 	
 	
 GET /v1/persons/{personId}/encounters	
 Read all encounters of one person

 	
 	
 GET /v1/persons/{personId}/encounters/{encounterId}	
 Read one encounter

 	
 	
 GET /v1/persons/{personId}/encounters/{encounterId}/templates	
 Read biometrics templates

 	
 	
 GET /v1/persons/{personId}/identities	
 Read all the identities of a person

 	
 	
 GET /v1/persons/{personId}/identities/{identityId}	
 Read one identity

 	
 	
 GET /v1/persons/{personId}/reference	
 Read the reference

 	
 	
 GET /v1/persons/{uin}	
 null

 	
 	
 GET /v1/persons/{uin}/document	
 null

 	
 	
 GET /v1/subscriptions	
 Get all subscriptions

 	
 	
 GET /v1/subscriptions/confirm	
 Confirm the subscription

 	
 	
 GET /v1/topics	
 Get all topics

 	
 	
 POST /v1/enrollments	
 Retrieve a list of enrollments which match passed in search criteria

 	
 	
 POST /v1/enrollments/{enrollmentId}	
 Create one enrollment

 	
 	
 POST /v1/enrollments/{enrollmentId}/buffer	
 This service is used to send separately the buffers of the images

 	
 	
 POST /v1/identify/{galleryId}	
 Biometric identification

 	
 	
 POST /v1/identify/{galleryId}/{personId}	
 Biometric identification based on existing data

 	
 	
 POST /v1/persons	
 Create one encounter and generate ID for both the person and the encounter

 	
 	
 POST /v1/persons/{personIdTarget}/merge/{personIdSource}	
 Merge two persons

 	
 	
 POST /v1/persons/{personId}	
 Create one person

 	
 	
 POST /v1/persons/{personId}/encounters	
 Create one encounter and generate its ID

 	
 	
 POST /v1/persons/{personId}/encounters/{encounterId}	
 Create one encounter

 	
 	
 POST /v1/persons/{personId}/identities	
 Create one identity and generate its id

 	
 	
 POST /v1/persons/{personId}/identities/{identityId}	
 Create one identity

 	
 	
 POST /v1/persons/{uin}/match	
 null

 	
 	
 POST /v1/persons/{uin}/verify	
 null

 	
 	
 POST /v1/subscriptions	
 Subscribe to a topic

 	
 	
 POST /v1/topics	
 Create a topic

 	
 	
 POST /v1/topics/{uuid}/publish	
 Post a notification to a topic.

 	
 	
 POST /v1/uin	

 	
 	
 POST /v1/verify	
 Biometric verification with two sets of data

 	
 	
 POST /v1/verify/{galleryId}/{personId}	
 Biometric verification

 	
 	
 PUT /v1/enrollments/{enrollmentId}	
 Update one enrollment

 	
 	
 PUT /v1/enrollments/{enrollmentId}/finalize	
 Finalize one enrollment

 	
 	
 PUT /v1/persons/{personId}	
 Update one person

 	
 	
 PUT /v1/persons/{personId}/encounters/{encounterId}	
 Update one encounter

 	
 	
 PUT /v1/persons/{personId}/identities/{identityId}	
 Update one identity

 	
 	
 PUT /v1/persons/{personId}/identities/{identityId}/reference	
 Define the reference

 	
 	
 PUT /v1/persons/{personId}/identities/{identityId}/status	
 Change the status of an identity

 	
 	
 DELETE /v1/enrollments/{enrollmentId}	
 Delete one enrollment

 	
 	
 DELETE /v1/persons/{personId}	
 Delete a person and all its identities

 	
 	
 DELETE /v1/persons/{personId}/encounters/{encounterId}	
 Delete one encounter

 	
 	
 DELETE /v1/persons/{personId}/identities/{identityId}	
 Delete one identity

 	
 	
 DELETE /v1/subscriptions/{uuid}	
 Unsubscribe from a topic

 	
 	
 DELETE /v1/topics/{uuid}	
 Delete a topic

 	
 	
 PATCH /v1/enrollments/{enrollmentId}	
 Update partially one enrollment

 	
 	
 PATCH /v1/persons/{personId}/identities/{identityId}	
 Update partially one identity

 		 	

 		
 /{$request.query.address}	

 	
 	
 POST {$request.query.address}	
 null

Index

 A
 | C
 | E
 | F
 | H
 | M
 | O
 | P
 | R
 | U

A

 	
 	ABIS

C

 	
 	CMS

 	
 	CR

 	Credential

E

 	
 	Encounter

F

 	
 	Functional systems and registries

H

 	
 	HTTP Status Codes

M

 	
 	Mime Types

O

 	
 	OSIA

P

 	
 	PR

R

 	
 	
 RFC

 	RFC 6750

 	RFC 7396, [1], [2], [3]

 	RFC 7519

U

 	
 	UIN

 _static/file.png

_static/down-pressed.png

_static/down.png

_images/plantuml-1574043515d2d1b7d7539698383fe4cdd7cc105b.png
CR PR

CRcan get a document from PR 1

1 readDocument([UIN] documentType format) . |
(rzzebocmersilbib)szermentyceformat |
i documents))

PR can get a document from CR

| readDocument([UIN]. documentType format) |
Ldocuments]

7

_static/minus.png

_static/plus.png

_images/plantuml-12bc3e1354392d503c9f927f8008fbd24b7fc241.png
Notification|
Emitter Engine Subscriber’

First step Is to create the topic)

create topic(nam
wid
Y

Then a system can subscribe for events published on that topic 1)

subscribeltopic,URL)

-

o
L

Tater

confirm the address before the subscription is active)

notifytoker) N

< Sebscribe_Caltoken) |

ok N

o
T T
it is now possible to publish notification Y
publizh(mezzage).
store

ok

Tsubscriptions]

subseribe CB(messagel

ok

_images/plantuml-42b711ad4ce68122e423244c5b8b11949a43846a.png
CR PR

CR can match person's attributes in PR

| matchpersonatributes(UiN attributes]) |
matchPersonttributes(Ulatiributes]))

[— :

PR can match person's attributes in CR_1)

| matchPersonattributes(UIN ttributes]) |

Ynvtreasons.

g

_images/plantuml-222d297963b76a33d5dc91dc3a2435b26c10bc9e.png
(©) Fitters

(© candidate string filterL:

@ i Rt

int rank; - int filter2Max;
int score: S e date fiter3Min;
date fiter3Max;

(©) candidatescore (© contextuaivata © Encounter (©siographicoats
fostscores g el Sing encouniend: g el
e"wg s int field2; string status: int field2;
Sameiitie, s g Scoumtertyper| | e teids:
i blometricsUbType: oviet chemsbea,

@oier | [@sonercon

bytel] image:
URL imageRef;

string galleryiD;

.Temp\ate

byte[] buffer;
string format:

_static/up-pressed.png

_images/plantuml-47ce6184e893fe31ea7bc856946c3921e276c9c1.png
.Enmumenmagsnata .RequestData .smgrapmcnata
©pcrraiment | oo e i e i e
int field2: int field2: int field2:
SREICHCIERE date feld3: date feld3: date feld3:
) [vm—

bytel] image:
URL imageRef;

int documentType:

(© ocumenteart

bytel] image:
URL imageRef;

_images/plantuml-5d9ee9b57ff27a342b46a7cd26f5728b96e68ff4.png
PR CR

sesuplicatel)

notify(duplicate [UIN])
Inctifyluplicate (UND___ |
T

reacPersonttributes(UIN
e ()

£V merge/reg\sterduphcateﬁ

nav.xhtml

 Table of Contents

 		
 OSIA Specification

 		
 Introduction

 		
 Problem Statement: vendor lock-in

 		
 The OSIA Initiative

 		
 Diffusion, Audience, and Access

 		
 Document Overview

 		
 Convention and Typographical Rules

 		
 Revision History

 		
 Functional View

 		
 Components: Standardized Definition and Scope

 		
 Interfaces

 		
 Components vs Interfaces Mapping

 		
 Use Cases - How to Use OSIA

 		
 Birth Use Case

 		
 Death Use Case

 		
 Marriage Use Case

 		
 Deduplication Use Case

 		
 ID Card Request Use Case

 		
 Bank account opening Use Case

 		
 Police identity control Use Case

 		
 Security & Privacy

 		
 Introduction

 		
 Virtual UIN

 		
 Authorization

 		
 Principles

 		
 Rules

 		
 Scopes

 		
 REST Interface Implementation

 		
 Privacy by Design

 		
 Privacy for end-to-end systems

 		
 PII actors

 		
 Data subject rights

 		
 What should OSIA API implementors do to prepare for safe PII?

 		
 OSIA Versions & Referencing

 		
 Interfaces

 		
 Notification

 		
 Services

 		
 Dictionaries

 		
 Data Access

 		
 Services

 		
 Dictionaries

 		
 UIN Management

 		
 Services

 		
 Enrollment Services

 		
 Services

 		
 Attributes

 		
 Transaction ID

 		
 Data Model

 		
 Population Registry Services

 		
 Services

 		
 Data Model

 		
 Biometrics

 		
 Services

 		
 Options

 		
 Data Model

 		
 Credential Services

 		
 Services

 		
 Attributes

 		
 ID Usage

 		
 Services

 		
 Under discussion

 		
 Services

 		
 Filter

 		
 Transaction ID

 		
 Data Model

 		
 Components

 		
 Enrollment Component

 		
 Enrollment Services

 		
 Population Registry

 		
 Notification

 		
 Data Access

 		
 Population Registry Services

 		
 Civil Registry

 		
 Notification

 		
 Data Access

 		
 UIN Generator

 		
 UIN Management

 		
 ABIS

 		
 Biometrics

 		
 Credential Management System

 		
 Credential Services

 		
 Third Party Services

 		
 ID Usage

 		
 Annexes

 		
 Glossary

 		
 Data Format

 		
 Technical Specifications

 		
 Notification

 		
 UIN Management

 		
 Data Access

 		
 Enrollment

 		
 Population Registry Management

 		
 Biometrics

 		
 Third Party Services

_static/vendorlockin.png
The Challenge

-N

Civil
Registry

Dependency challenges equate to cost and operational risk

Replace

_images/plantuml-844ef197806ea69c6a5925c83e8bd5d36d27fbb6.png
Mother or Father

CR

PR

UIN Generator|

1 Checks

matchPersonattributes(mother attributes)
[matchPerzonAttributes(mother attributes) .|

matchPersonattributes(father attributes)

readPersonattributes(mother)
[reacPersonAtiributestmother) |

readpersonatributesather)
[reacPersonAttributestfather) |

aueryPersonUiN(new born attributes)
[LaueryPerzonUiNinew born sttributes) |

Addtionsl checks

e

generatein

[[register the birth &

3. Notification

[Toublish(birtnumy

readPersonattributes(new born)

readpersonattributes(mother)

readpersonatributesather)

create/update identities

_images/plantuml-68b00cd34a9d0b19505342a11f3f313c65f23733.png
CR PR

CRcan get UINfrom PRy

1 averyPersonUN([attributes]) !
iReenpernbbilotrbates)
o ;

PR can get UIN from CR 1)

| averypersonUINattributes]) |
g

! >

_images/plantuml-9a768cd50021e3e77c845f2de7abf73d4986abba.png
cr|[PR UIN Generator|

CR can request a new UIN N

1 generateUiN([attributes])
S ——

Lo

PR can request anew UN__ 1)

| generateUin(atiributes))
un

P i

_images/plantuml-94ef539b8c8dccae6676146490826ff81528d2ee.png
CR PR

CR can request person’s attributes from PR

1 averyPersontist(attributes] (names]) . |
. ttributes) |

PR can request person's attrbutes from CR_ 1)

| ¢ averypersontistlatributesl(namesl) |

attributes]

! >

_static/up.png

_images/plantuml-aa9c9a8e81eed1a2625fdc90f0ad78a4138cf857.png
Third Party Services| | ABIS [| PR

citizen Policeman

| Show 1 card ;
(ShowiDcard)

| Capture fingerpring

readatiributeSet (UINL, attibute set name)

[rreadattributeset (UND, stribute set name) | |

readPersonattibutbs(UINY)
List of sttributes values

readattributeSet (UIN2, atribute set name)

> :

reactpersonattributes(UiN2)
List of ttributes values |
e — |
readattributeSet (UIN3, atribute set name) |
>| |

readpersonattibutes(UINS)

e —

| tistofatuibutesvalves | |[display attributes for each candidate

_images/plantuml-bc3be72cff39291cd7626fdf4523059501ed58fe.png
CR PR

CR can verffy person’s attributes in PR 1)

T ———
[——
Lw :

PR can verify person's attributes in CR_™)

| < verifyPersonatributes(UiN expressions]) |
Y

! >

_images/plantuml-af1ac17a5dc9e3fd8892690bcbcc94855cbb1c61.png
CR PR

CR can request person’s attributes from PR

1 readPersonatiributes(Uit names]) |
resdrersenatirbutes (Ut names]) |

I stirbutes B

PR can request person's attrbutes from CR_ 1)

| readPersonattributes(Uit [names]) |

sttributes

8

_images/plantuml-d3bf363a57db6dc81605ead8898a92212083aab4.png
(©) Contextuaibata

String fieldL:
int field2;
date field3;

string galleryiD;

string identitylD:

bytel] clientData;

(© sometncona

string type
string subType
bytel] image
URL imageRef

string personiD:
‘enum status: Active | Inactive:
enum physicaltatus: Alive | Dead:

‘enum status: Claimed | Valid | Invalid | Revoked:

. BiographicData

string firstame;
string lastName:
| date dateofBirth:
date dateofDeath;
string addressLinel:

‘enum type: Docl | Doc2 | Signature | etc:
string instance:

© Documenteart

intl] pages:
byte[] data:
URL dataRef:
int width:

int height:
date captureDate;
string captureDevice:
string format.

_images/plantuml-cce01c896fd00a66a6008cd4b56820097b058342.png

_images/vendorlockin.png
The Challenge

-N

Civil
Registry

Dependency challenges equate to cost and operational risk

Replace

_images/plantuml-f30cfa4c8dd03b5b32e690858bf83581eff6989c.png
N

citizen Bank attendant jihid EartyjServices ER

| Gotosgency | |

verifyldentity(UIN, biometric o civil data or credentia :

readattributeset (UIN, attribute set name)
| resdAttributeSet (UM, attribute set name) |

readPersonattributes(UIN)

| tistof swribuesvaties | |[fiin attributes in bank account ™

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

