
Specifications version 5.0.0

©Secure Identity Alliance, 2020

Contents

1 Introduction 1
1.1 Problem Statement: vendor lock-in . 1
1.2 The OSIA Initiative . 2
1.3 Diffusion, Audience, and Access . 3
1.4 Document Overview . 3
1.5 Convention and Typographical Rules . 3
1.6 Revision History . 4

2 Functional View 5
2.1 Components: Standardized Definition and Scope . 5
2.2 Interfaces . 8
2.3 Components vs Interfaces Mapping . 11
2.4 Use Cases - How to Use OSIA . 12

2.4.1 Birth Use Case . 13
2.4.2 Death Use Case . 14
2.4.3 Deduplication Use Case . 15
2.4.4 ID Card Request Use Case (1) . 15
2.4.5 ID Card Request Use Case (2) . 17
2.4.6 Bank account opening Use Case . 18
2.4.7 Police identity control Use Case . 18
2.4.8 Telco Customer Enrollment with ID document . 19
2.4.9 Telco Customer Enrollment with no ID document . 19

3 Security & Privacy 21
3.1 Introduction . 21
3.2 Virtual UIN . 21
3.3 Authorization . 21

3.3.1 Principles . 21
3.3.2 Rules . 22
3.3.3 Scopes . 22
3.3.4 REST Interface Implementation . 24

3.4 Privacy by Design . 24
3.4.1 Privacy for end-to-end systems . 25
3.4.2 PII actors . 25
3.4.3 Data subject rights . 26
3.4.4 What should OSIA API implementors do to prepare for safe PII? 27

4 OSIA Versions & Referencing 29

5 Interfaces 30
5.1 Notification . 30

i

5.1.1 Services . 31
5.1.2 Dictionaries . 33

5.2 Data Access . 33
5.2.1 Services . 33
5.2.2 Dictionaries . 36

5.3 UIN Management . 37
5.3.1 Services . 37

5.4 Enrollment Services . 38
5.4.1 Services . 38
5.4.2 Attributes . 41
5.4.3 Transaction ID . 41
5.4.4 Data Model . 42

5.5 Population Registry Services . 43
5.5.1 Services . 43
5.5.2 Data Model . 49

5.6 Biometrics . 50
5.6.1 Services . 51
5.6.2 Options . 56
5.6.3 Data Model . 57

5.7 Credential Services . 58
5.7.1 Services . 58
5.7.2 Attributes . 61
5.7.3 Data Model . 61

5.8 ID Usage . 62
5.8.1 Relying Party API . 63
5.8.2 Attribute set . 64
5.8.3 Attribute set name . 64
5.8.4 Output Attribute set . 64

6 Components 65
6.1 Enrollment Component . 65

6.1.1 Enrollment Services . 65
6.2 Population Registry . 70

6.2.1 Notification . 70
6.2.2 Data Access . 73
6.2.3 Population Registry Services . 77

6.3 Civil Registry . 84
6.3.1 Notification . 84
6.3.2 Data Access . 87

6.4 UIN Generator . 91
6.4.1 UIN Management . 91

6.5 ABIS . 92
6.5.1 Biometrics . 92

6.6 Credential Management System . 100
6.6.1 Credential Services . 100

6.7 ID Usage . 105
6.7.1 ID Usage . 105

7 Annexes 108
7.1 Glossary . 108
7.2 Data Format . 109
7.3 Technical Specifications . 109

7.3.1 Notification . 109
7.3.2 UIN Management . 119
7.3.3 Data Access . 120
7.3.4 Enrollment . 126
7.3.5 Population Registry Management . 140
7.3.6 Biometrics . 160

ii

7.3.7 Credential Services . 200
7.3.8 ID Usage Services . 212

HTTP Routing Table 227

Index 229

iii

CHAPTER 1

Introduction

1.1 Problem Statement: vendor lock-in

Target 16.9 of the UN Sustainable Development Goals is to “provide legal identity for all, including birth regis-
tration” by the year 2030. But there is a major barrier: the lack of vendor/provider and technology neutrality -
commonly known as “vendor lock-in”.

The lack of vendor and technology neutrality and its consequences becomes apparent when a customer needs to
replace one component of the identity management solution with one from another provider, or expand the scope
of their solution by linking to new components. Main technology barriers are the following:

1. Solution architectures are not interoperable by design. The lack of common definitions as to the overall
scope of an identity ecosystem, as well as in the main functionalities of a system’s components (civil registry,
biometric identification system, population registry etc.), blurs the lines between components and leads to
inconsistencies. This lack of so-called irreducibly modular architectures makes it difficult, if not impossible,
to switch to a third-party component intended to provide the same function and leads to incompatibilities
when adding a new component to an existing ecosystem.

2. Standardized interfaces (APIs) do not exist. Components are often unable to communicate with each other
due to varying interfaces (APIs) and data formats, making it difficult to swap out components or add new
ones to the system.

For government policy makers tasked with implementing national identification systems, vendor lock-in is now
one of their biggest concerns.

1

OSIA, Release 5.0.0

Fig. 1.1: The dependency challenge

1.2 The OSIA Initiative

Launched by the not-for-profit Secure Identity Alliance, Open Standard Identity APIs (OSIA) is an initiative
created for the public good to address vendor lock-in problem.

OSIA addresses the vendor lock-in concern by providing a simple, open standards-based connectivity layer be-
tween all key components within the national identity ecosystem.

OSIA scope is as follows:

1. Address the lack of common definitions within the identity ecosystem – NON PRESCRIPTIVE

Components of the identity ecosystem (civil registry, population registry, biometric identification
system etc.) from different vendors are functionally incompatible due to the absence of a common
definition/understanding of broader functionalities and scope.

OSIA first step has been to formalize definitions, scope and main functionalities of each component
within the identity ecosystem.

2. Create a set of standardized interfaces – PRESCRIPTIVE

This core piece of work develops the set of interfaces and standardized data formats to connect the
multiple identity ecosystem components to ensure seamless interaction via pre-defined services.

Process of interaction among components (hence type of services each component implements) is
down to each government to define and implement according to local laws and regulations.

With OSIA, governments are free to select the components they need, from the suppliers they choose – without
fear of lock in.

And because OSIA operates at the interface layer, interoperability is assured without the need to rearchitect envi-
ronments or rebuild solutions from the ground up. ID ecosystem components are simply swapped in and out as
the use case demands – from best-of-breed options already available on the market.

1.2. The OSIA Initiative 2

OSIA, Release 5.0.0

This real-world approach dramatically reduces operational and financial risk, increases the effectiveness of existing
identity ecosystems, and rapidly moves government initiatives from proof of concept to live environments.

1.3 Diffusion, Audience, and Access

This specification is hosted in GitHub and can be downloaded from ReadTheDocs.

This specification is licensed under The SIA License.

Any country, technology partner or individual is free to download the functional and technical specifications to
implement it in their customized foundational and sectoral ID systems or components. Governments can also
reference OSIA as Open Standards in tenders. For more information on how to reference OSIA please see Section
OSIA Versions & Referencing.

1.4 Document Overview

This document aims at:

• formalizing definitions, scope and main functionalities of each component within the identity ecosystem,

• defining standardized interfaces and data format to connect the multiple ecosystem components to ensure
seamless interaction via pre-defined services.

This document is structured as follows:

• Chapter 1 Introduction: This chapter introduces the problem statement and the OSIA initiative.

• Chapter 2 Functional View: This chapter provides an overview of OSIA interfaces and how they can be
mapped against the various identity ecosystem components. Finally, the chapter describes a series of use
cases where different OSIA interfaces are implemented between multiple identity ecosystem components.

• Chapter 3 Security and Privacy: This chapter lists a set of Privacy and Security features embedded in OSIA
interfaces specifications.

• Chapter 4 OSIA Versions and Referencing: This chapter describes the way OSIA interfaces can be refer-
enced in documents and tenders.

• Chapter 5 Interfaces: This chapter describes the specifications of all OSIA interfaces.

• Chapter 6 Components: This chapter describes OSIA interfaces that each component of the identity ecosys-
tem may implement.

1.5 Convention and Typographical Rules

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in
RFC 2119.

Code samples highlighted in blocks appear like that:

{
"key": "value",
"another_key": 23

}

Note: Indicates supplementary explanations and useful tips.

1.3. Diffusion, Audience, and Access 3

https://github.com/SecureIdentityAlliance/osia
https://osia.readthedocs.io/en/latest/
https://raw.githubusercontent.com/SecureIdentityAlliance/osia/master/LICENSE
http://www.ietf.org/rfc/rfc2119.txt

OSIA, Release 5.0.0

Warning: Indicates that the specific condition or procedure must be respected.

1.6 Revision History

Table 1.1: OSIA Services Versions
OSIA Release 1.0.0 2.0.0 3.0.0 4.1.0 5.0.0
OSIA Release Date mar-2019 jun-2019 nov-2019 jul-2020 dec-2020
Notification . 1.0.0 1.0.0 1.1.0 1.2.0
UIN Management 1.0.0 1.0.0 1.0.0 1.1.0 1.2.0
Data Access 1.0.0 1.0.0 1.0.0 1.1.0 1.3.0
Enrollment Services . . . 1.0.0 1.1.0
Population Registry Services . . 1.0.0 1.2.0 1.3.0
Biometrics Services . 1.0.0 1.1.0 1.3.0 1.4.0
Credential Services . . . 1.0.0 1.1.0
Relying Party Services . . . 1.0.0

1.6. Revision History 4

CHAPTER 2

Functional View

2.1 Components: Standardized Definition and Scope

OSIA provides seamless interconnection between multiple components part of the identity ecosystem.

The components are defined as follows:

• The Enrollment component.

Enrollment is defined as a system to register biographic and biometric data of individuals.

• The Population Registry (PR) component.

Population registry is defined as “an individualized data system, that is, a mechanism of continuous record-
ing, or of coordinated linkage, of selected information pertaining to each member of the resident population
of a country in such a way to provide the possibility of determining up-to-date information concerning the
size and characteristics of that population at selected time intervals. The population register is the product
of a continuous process, in which notifications of certain events, which may have been recorded originally
in different administrative systems, are automatically linked on a current basis. A. method and sources of
updating should cover all changes so that the characteristics of individuals in the register remain current.
Because of the nature of a population register, its organization, and also its operation, must have a legal
basis.”1

• The UIN Generator component.

UIN generator is defined as a system to generate and manage unique identifiers.

• The Automated Biometric Identification System (ABIS) component.

An ABIS is defined as a system to detect the identity of an individual when it is unknown, or to verify the
individual’s identity when it is provided, through biometrics.

• The Civil Registry (CR) component.

Civil registration is defined as “the continuous, permanent, compulsory and universal recording of the oc-
currence and characteristics of vital events pertaining to the population, as provided through decree or reg-
ulation is accordance with the legal requirement in each country. Civil registration is carried out primarily

1 Handbook on Civil Registration and Vital Statistics Systems: Management, Operation and Maintenance, Revision 1, United Nations,
New York, 2018, available at: https://unstats.un.org/unsd/demographic-social/Standards-and-Methods/files/Handbooks/crvs/crvs-mgt-E.pdf ,
para 65.

5

https://unstats.un.org/unsd/demographic-social/Standards-and-Methods/files/Handbooks/crvs/crvs-mgt-E.pdf

OSIA, Release 5.0.0

for the purpose of establishing the documents provided by the law.”2

• The Credential Management System (CMS) component.

CMS is defined as a system to manage the production and issuance of credentials such as ID Cards, pass-
ports, driving licenses, digital ID, etc.

• The Third Party Services component.

This component interfaces with external systems to leverage the identity databases for the benefits of in-
dividuals. It provides services to authenticate, identify, and access identity attributes for use cases such as
KYC.

• The Digital Credential Issuance & Distribution System.

This component is in charge of the issuance and delivery of the digital credentials built from the identity
databases under the control of the CMS.

2 Principles and Recommendations for a Vital Statistics System, United Nations publication Sales Number E.13.XVII.10, New York, 2014,
paragraph 279

2.1. Components: Standardized Definition and Scope 6

OSIA, Release 5.0.0

Table 2.1: Components
ID Ecosystem Component Data Functions
Enrollment

• Biographic data
• UIN
• History
• Supporting documents

• Recording application
• Collecting personal data

PR
• Biographic data
• UIN
• History
• Supporting documents

• Identity attributes storage
• Identity Life cycle manage-

ment

UIN Gen
• Biographic data
• UIN

• UIN generation

ABIS
• UIN
• Biometric data (images and

templates)

• Authentication (1:1)
• Identification (1:N)
• Quality control and adjudi-

cation

CR
• Events
• UIN
• History
• Supporting documents

• Events storage
• Certificate production
• Workflow

CMS
• Biographic data
• UIN
• Biometric data
• Credential event history

• Credential data storage
• Credential Life cycle man-

agement
• Credential Production
• Workflow

Third Party Services
• Biographic data/Identity at-

tributes
• Biometric data

• Authentication (1:1)
• Identification (1:N)
• Access to identity attributes

Digital Credential Issuance & Dis-
tribution System • Issuance of a digital creden-

tial
• Delivery of a digital creden-

tial

The components are represented on the following diagram:

2.1. Components: Standardized Definition and Scope 7

OSIA, Release 5.0.0

ENROLLMENT Third

Party

Services

Population

Registry

(PR)

UIN

Generator

Biometric

System

(ABIS)

Civil

Registry

(CR)

Credential

Management

System (CMS)

Enrol.

Client
Enrol.

Server

OSIA

Government or
Private Sector
(taxes, banks, telcos, etc.

Identity
Provider

(Database)

Identity
Provider

(Card Based)

Digital
Credential

Distribution
System

OpenIDConnect, ISO18013, etc.

Identity
Provider

Digital
Credential
Issuance &
Distribution

System

Fig. 2.1: Components identified as part of the identity ecosystem

2.2 Interfaces

This chapter describes the following interfaces:

• Notification

A set of services to manage notifications for different types of events as for instance birth and death.

• Data access

A set of services to access data.

The design is based on the following assumptions:

1. All persons recorded in a registry have a UIN. The UIN can be used as a key to access person data for
all records. Please note that the UIN is the same throughout all registries (see Chapter 3 - Security &
Privacy).

2. The registries (civil, population, or other) are considered as centralized systems that are connected.
If one registry is architectured in a decentralized way, one of its component must be centralized,
connected to the network, and in charge of the exchanges with the other registries.

3. Since the registries are customized for each business needs, dictionaries must be explicitly defined to
describe the attributes, the event types, and the document types. See Data Access for samples of those
dictionaries.

4. The relationship parent/child is not mandatory in the population registry. A population registry im-
plementation may manage this relationship or may ignore it and rely on the civil registry to manage
it.

5. All persons are stored in the population registry. There is no record in the civil registry that is not also
in the population registry.

• UIN Management

A set of services to manage the unique identifier.

2.2. Interfaces 8

OSIA, Release 5.0.0

• Enrollment Services

A set of services to manage biographic and biometric data upon collection.

• Population Registry Services

A set of services to manage a registry of the population.

• Biometrics

A set of services to manage biometric data and databases.

• Credential Services

A set of services to manage credentials, physical and digital.

• ID Usage

A set of services implemented on top of identity systems to favour third parties consumption of identity
data.

The following table describes in detail the interfaces and associated services.

Table 2.2: Interfaces List
Services Description
Notification
Subscribe Subscribe a URL to receive notifications sent to one topic
List Subscription Get the list of all the subscriptions registered in the server
Unsubscribe Unsubscribe a URL from the list of receiver for one topic
Confirm Confirm that the URL used during the subscription is valid
Create Topic Create a new topic
List Topics List all the existing topics
Delete Topic Delete a topic
Publish Notify of a new event all systems that subscribed to this topic
Data Access
Read Person Attributes Read person attributes
Match Person Attributes Check the value of attributes without exposing private data
Verify Person Attributes Evaluate simple expressions on person’s attributes without exposing private

data
Query Person UIN Query the persons by a set of attributes, used when the UIN is unknown
Query Person List Query the persons by a list of attributes and their values
Read document Read in a selected format (PDF, image, etc.) a document such as a marriage

certificate
UIN Management
Generate UIN Generate a new UIN
Enrollment Services
Create Enrollment Insert a new enrollment
Read Enrollment Retrieve an enrollment
Update Enrollment Update an enrollment
Partial Update Enrollment Update part of an enrollment
Finalize Enrollment Finalize an enrollment (mark it as completed)
Delete Enrollment Delete an enrollment
Find Enrollments Retrieve a list of enrollments which match passed in search criteria
Send Buffer Send a buffer (image, etc.)
Get Buffer Get a buffer
Population Registry Services
Find Persons Query for persons, using all the available identities
Create Person Create a new person
Read Person Read the attributes of a person
Update Person Update a person

Continued on next page

2.2. Interfaces 9

OSIA, Release 5.0.0

Table 2.2 – continued from previous page
Delete Person Delete a person and all its identities
Merge Persons Merge two persons
Create Identity Create a new identity in a person
Read Identity Read one or all the identities of one person
Update Identity Update an identity. An identity can be updated only in the status claimed
Partial Update Identity Update part of an identity. Not all attributes are mandatory.
Delete Identity Delete an identity
Set Identity Status Set an identity status
Define Reference Define the reference identity of one person
Read Reference Read the reference identity of one person
Read Galleries Read the ID of all the galleries
Read Gallery Content Read the content of one gallery, i.e. the IDs of all the records linked to this

gallery
Biometrics
Create Encounter Create a new encounter. No identify is performed
Read Encounter Read the data of an encounter
Update Encounter Update an encounter
Delete Encounter Delete an encounter
Merge Encounter Merge two sets of encounters
Set Encounter Status Set an encounter status
Read Template Read the generated template
Read Galleries Read the ID of all the galleries
Read Gallery content Read the content of one gallery, i.e. the IDs of all the records linked to this

gallery
Identify Identify a person using biometrics data and filters on biographic or contextual

data
Verify Verify an identity using biometrics data
Credential Services
Create Credential Request Request issuance of a secure credential
Read Credential Request Retrieve the data/status of a credential request
Update Credential Request Update the requested issuance of a secure credential
Delete Credential Request Delete/cancel the requested issuance of a secure document / credential
Find Credentials Retrieve a list of credentials that match the passed in search criteria
Read Credential Retrieve the attributes/status of an issued credential (smart card, mobile,

passport, etc.)
Suspend Credential Suspend an issued credential. For electronic credentials this will suspend

any PKI certificates that are present
Unsuspend Credential Unsuspend an issued credential. For electronic credentials this will unsus-

pend any PKI certificates that are present
Revoke Credential Revoke an issued credential. For electronic credentials this will revoke any

PKI certificates that are present
Set Credential Status Change the credential status
Find Credential Profiles Retrieve a list of credential profils that match the passed in search criteria
ID Usage
Verify ID Verify Identity based on UIN and set of attributes (biometric data, demo-

graphics, credential)
Identify Identify a person based on a set of attributes (biometric data, demographics,

credential)
Read Attributes Read person attributes
Read Attributes set Read person attributes corresponding to a predefined set name

2.2. Interfaces 10

OSIA, Release 5.0.0

2.3 Components vs Interfaces Mapping

The interfaces described in the following chapter can be mapped against ID ecosystem components as per the
table below:

Table 2.3: Components vs Interfaces Mapping
Components

Interfaces Enroll
Clt

Enroll
Srv

PR UIN
Gen

ABIS CR CMS ID Us-
age

Notification
Subscribe U U U U
List Subscription U U U U
Unsubscribe U U U U
Confirm U U U U
Create Topic U U U U
List Topics U U U U
Delete Topic U U U U
Publish U U U U
Data Access
Read Person Attributes U IU U IU U
Match Person Attributes U IU IU U
Verify Person Attributes U IU IU U
Query Person UIN U IU IU U
Query Person List U U
Read Document U IU IU U
UIN Management
Generate UIN U I U
Enrollment Services
Create Enrollment U I
Read Enrollment U I
Update Enrollment U I
Partial Update Enrollment U I
Finalize Enrollment U I
Delete Enrollment U I
Find Enrollments U I
Send Buffer U I
Get Buffer U I
Population Registry Services
Find Persons I
Create Person I U U
Read Person I U U U
Update Person I U U
Delete Person I U U
Merge Person I U
Create Identity I
Read Identity I
Update Identity I
Partial Update Identity I
Delete Identity I
Set Identity Status I
Define Reference I
Read Reference I
Read Galleries I
Read Gallery Content I

Continued on next page

2.3. Components vs Interfaces Mapping 11

OSIA, Release 5.0.0

Table 2.3 – continued from previous page
Components

Interfaces Enroll
Clt

Enroll
Srv

PR UIN
Gen

ABIS CR CMS ID Us-
age

Biometrics
Create Encounter U U I
Read Encounter U U I U
Update Encounter U U I
Delete Encounter U U I
Merge Encounter U I
Set Encounter Status U U I
Read Template U U I
Read Galleries
Read Gallery Content U U I
Identify U I U
Verify U I U
Credential Services
Create Credential Request I
Read Credential Request I
Update Credential Request I
Delete Credential Request I
Find Credentials I
Read Credential I
Suspend Credential I
Unsuspend Credential I
Revoke Credential I
Set Credential Status I
Find Credential Profiles I
ID Usage
Verify ID I
Identify ID I
Read Attributes I
Read Attributes set I

where:

• I is used when a service is implemented (provided) by a component

• U is used when a service is used (consumed) by a component

2.4 Use Cases - How to Use OSIA

Below are a set of examples of how OSIA interfaces could be implemented in various use cases.

2.4. Use Cases - How to Use OSIA 12

OSIA, Release 5.0.0

2.4.1 Birth Use Case

Fig. 2.2: Birth Use Case

1. Checks

When a request is submitted, the CR may run checks against the data available in the PR using:

• matchPersonAttributes: to check the exactitude of the parents’ attributes as known in the PR

• readPersonAttributes: to get missing data about the parents’s identity

• qureyPersonUIN: to check if the new born is already known to PR or not

How the CR will process the request in case of data discrepancy is specific to each CR implementation and
not in the scope of this document.

2. Creation

The first step after the checks is to generate a new UIN. To do so, the CR requests a new UIN to the PR
using generateUIN service. At this point the birth registration takes place. How the CR will process the
birth registration is specific to each CR implementation and not in the scope of this document.

3. Notification

As part of the birth registration, it is the responsibility of the CR to notify other systems, including the PR,
of this event using:

• publish: to send a birth along with the new UIN.

The PR, upon reception of the birth event, will update the identity registry with this new identity using:

2.4. Use Cases - How to Use OSIA 13

OSIA, Release 5.0.0

• readPersonAttributes: to get the attributes of interest to the PR for the parents if relevant and
the new child.

2.4.2 Death Use Case

Fig. 2.3: Death Use Case

1. Subject identification checks

When a death notification is submitted by an authorized party, the CR shall run checks against the data
available in the PR using:

• matchPersonAttributes: to check the exactitude of the subject’s attributes as known in the PR

• readPersonAttributes: to get missing data about the subject’s identity that

• queryPersonUIN: to check if the person is already known to PR or not

How the CR will process the request in case of data discrepancy is specific to each CR implementation and
not in the scope of this document. The CR may implement an internal procedure to create a valid PR record
retrospectively.

2. Notification creation

The first step after the identity checks is to notify the life event status to the PR based on an identified record.
At this point the death notification is recorded by not finally registered. Most states implement a waiting
period. How the CR will process the death notification is specific to each CR implementation - a provisional
certificate is possible.

3. Final registration

When the PR finalizes the status of the subject’s person record then the CR may publish this information at
its discretion. The PR may maintain a list of interested parties who shall be informed of any finalized death

2.4. Use Cases - How to Use OSIA 14

OSIA, Release 5.0.0

status. A final certificate of death including the context of this event is typically issued by the CR to the
notifier for distribution.

2.4.3 Deduplication Use Case

During the lifetime of a registry, it is possible that duplicates are detected. This can happen for instance after the
addition of biometrics in the system. When a registry considers that two records are actually the same and decides
to merge them, a notification must be sent.

Fig. 2.4: Deduplication Use Case

How the target of the notification should react is specific to each subsystem.

2.4.4 ID Card Request Use Case (1)

An ID card is one type of credential. The procedures surrounding credential issuance may involve several sub-
systems that contribute to the establishment of the applicant identity and the required data for the type of credential.

This use case assumes a simple starting scenario where the identity is known and can be validated, mostly with
data available from a Civil or Population Registry based Identity Provider. These use cases also assume the use of
a Credentials Management System (CMS) responsible for the technical personalization and lifecycle management
of a credential such as an ID card.

The use case aims to show how a selection of the CMS API calls can support a typical, use case in relation to
CMS usage.

2.4. Use Cases - How to Use OSIA 15

OSIA, Release 5.0.0

Fig. 2.5: ID Card Request Use Case (1)

1. Identity Checks

The example scenario assumes a credential provider service such as an ID card provider (National ID,
Voter, &c). Such as service may access several OSIA API based components to establish an ID check. In
this example the Population Register is used. This example case also assumes that the credential provider
holds its own register of credentials issued to its subscribers.

2. Suspend Credential

In the example above the citizen has lost a card and requests a replacement. The credential provider service
first establishes the legitimacy of the citizen identity and the identity of the lost document within its own
register. The next likely step in such a use case is to suspend the current credential. This is done using a
CMS API call. The CMS confirms this step with a reference. In some use cases the reported lost credential
may be cancelled immediately, but this is typically a decision made by the policy of the credential provider.
There is an OSIA API call to both either or both requirements to the CMS.

3. Requesting a New Credential

The credential provider is in this example case responsible for preparing the core document data for the
CMS. The CMS itself may further process this data appropriate to the credential type: for example the CMS
may be the service that signs this document data electronically. The CMS returns a new request ID to the
credential provider service which will enable the provider to query credential production status within the
CMS domain.

Such a business process might be interrupted by an new event such as the citizen finding her lost card
and wishing to cancel the replacement order, perhaps to avoid a replacement fee. Depending on the status
returned by the CMS to the credential provider then the credential provider service will act accordingly in
informing the citizen whether this is possible. In this case the citizen’s card was already replaced by the
CMS so the original card is now cancelled.

The CMS on its side is responsible for maintaining a credential profile which can be accessed by the CR at a
later point. This use case stops for CMS when the card is distributed to the CR for collection by the citizen.

2.4. Use Cases - How to Use OSIA 16

OSIA, Release 5.0.0

2.4.5 ID Card Request Use Case (2)

A second ID Request use case shows how the CMS might expose more decisions to the credential providing
service. In this case it is the citizen facing provider that controls the cancellation of the lost document, and this is
not automated within the CMS component.

Fig. 2.6: ID Card Request Use Case (2)

This second example shows how APIs may be used to flex the control over functions such as credential lifecycle
management. This example first makes use of the API to suspend a credential pending production of a replace-
ment; then a second API call is made to the CMS to instruct cancellation of the lost document.

2.4. Use Cases - How to Use OSIA 17

OSIA, Release 5.0.0

2.4.6 Bank account opening Use Case

Fig. 2.7: Bank account opening Use Case

2.4.7 Police identity control Use Case

Fig. 2.8: Collaborative identity control

2.4. Use Cases - How to Use OSIA 18

OSIA, Release 5.0.0

2.4.8 Telco Customer Enrollment with ID document

Fig. 2.9: Telco Customer Enrollment with ID document

1. Use case objective

This use case allows a telco operator to check a citizen’s ID document and identity.

The use case relies on an IDMS to check the authenticity and validity of the ID document presented by the
citizen, then to check that he actually is the holder of the document.

2. Pre-conditions

The citizen is registered in the IDMS and has a UIN.

The citizen has a valid ID document.

The citizen presents as a customer to the agent.

The IDMS should support authentication token generation to protect against misusage of UIN.

3. Use case description

The customer shows his ID document to the Agent. The Agent inputs (possibly by reading an MRZ on the
document) the UIN, document ID, name, given name, DOB, and a live facial portrait taken of the citizen.

The telco server calls an IDMS API to check if the information of the ID document is coherent and if the
document is still valid.

The telco server calls an IDMS API to get meta data of the document such as the issuing agency, the issuing
date, expiration date, etc.

The telco server calls an IDMS API to check if the customer is actually the holder of the document using
his live biometric portrait.

The telco server calls an IDMS API to get some reliable data of the customer in order to register him.

4. Result

The citizen is now identified, authenticated and registered in a customer database and becomes eligible to
buy a SIM card.

The telco operator can prove regulatory controls have been applied for ‘Know Your Customer’ compliance.

2.4.9 Telco Customer Enrollment with no ID document

A customer applying for a new network SIM card may not be able to present an ID document as part of her
application.

2.4. Use Cases - How to Use OSIA 19

OSIA, Release 5.0.0

Fig. 2.10: Telco Customer Enrollment with no ID document

1. Use case objective

This use case allows a telco operator to check a citizen’s identity and get his attributes relying on IDMS to
check that the biometrics of the citizen matches with his UIN.

2. Pre-conditions

The citizen is registered in the IDMS and has a UIN.

The citizen biometrics are registered and associated to his UIN.

The citizen presents as a customer to the agent.

The IDMS should support authentication token generation to protect against misusage of UIN.

3. Use case description

The Agent inputs the citizen’s UIN, Name, 1st Name, DOB and takes a live photo portrait of the customer.

The telco server calls an IDMS API to check if the customer is actually the citizen corresponding to the
given UIN thanks to his live portrait (face biometric matching).

The telco server calls an IDMS API to get some reliable data of the customer in order to register him.

4. Result

The citizen is now identified, authenticated and registered in a customer database and becomes eligible to
buy a SIM card.

The telco operator can prove regulatory controls have been applied for ‘Know Your Customer’ compliance.

2.4. Use Cases - How to Use OSIA 20

CHAPTER 3

Security & Privacy

3.1 Introduction

Insert diagram of security & privacy features

3.2 Virtual UIN

Explain: using a different UIN in each subsystem - no direct/easy links between the records in different subsystems

3.3 Authorization

Because OSIA is a set of interfaces/API and not a full system, this chapter describes only how to secure those
API, through the usage of standard JWT, and not how to generate and protect such tokens, nor how to secure the
full system.

Securing the API is one mandatory step on the way to a secure system, but securing a full system includes more
than just that: hardware & software components, processes & methodology, audit, etc. that are not in the scope of
this document.

3.3.1 Principles

Securing OSIA services is implemented with the following principles:

• Rely on JWT: “JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be trans-
ferred between two parties” It can be “digitally signed or integrity protected with a Message Authentication
Code (MAC) and/or encrypted”. [RFC 7519]

• Tokens of type “Bearer Token” are used. [RFC 6750] The generation and management of those tokens are
not in the scope of this document.

• Validating the token is the responsibility of the service implementation, with the help of components not
described in this document (PKI, authorization server, etc.)

21

https://tools.ietf.org/html/rfc7519.html
https://tools.ietf.org/html/rfc6750.html

OSIA, Release 5.0.0

• The service implementations are responsible for extracting information from the token and give access or
not to the service according to the claims contained in the token and the scope defined for each service in
this document.

• The service implementations are free to change the security scheme used, for instance to use OAuth2 or
OpenID Connect, if it fits the full system security policy. Scopes must not be changed.

• All HTTP exchanges must be secured with TLS. Mutual authentication is not mandatory.

Note: The added use of peer-to-peer payload encryption - e.g. to protect biometric data - is not in the scope of
this document.

Note: OSIA does not define ACL (Access Control List) to protect the access to a subset of the data. This may be
added in a future version.

Warning: Bearer tokens are sensitive and subject to security issues if not handled properly. Please refer to
JSON Web Token Best Current Practices for advice on proper implementation.

3.3.2 Rules

All scopes are named according to the following rules:

application[.resource].action

where:

• application is a key identifying the interface group listed in Interfaces. Examples: notif, pr, cr, abis,
etc.

• resource is a key identifying the resource. Examples: person, encounter, identity, etc.

• action is one of:

– read: for read access to the data represented by the resource and managed by the application.

– write: for creating, updating or deleting the data.

– or another value, for specific actions such as match or verify that need to be distinguished from a
general purpose read or write for proper segregation.

Scopes should be less than 20 characters when possible to limit the size of the bearer token.

3.3.3 Scopes

The following table is a summary of all scopes defined in OSIA.

Table 3.1: Scopes List
Services Scope
Notification
Subscribe notif.sub.write
List Subscription notif.sub.read
Unsubscribe notif.sub.write
Confirm notif.sub.write
Create Topic notif.topic.write
List Topics notif.topic.read
Delete Topic notif.topic.write

Continued on next page

3.3. Authorization 22

https://tools.ietf.org/id/draft-ietf-oauth-jwt-bcp-02.html

OSIA, Release 5.0.0

Table 3.1 – continued from previous page
Publish notif.topic.publish
Data Access
Read Person Attributes pr.person.read or cr.person.read
Match Person Attributes pr.person.match or cr.person.match
Verify Person Attributes pr.person.verify or cr.person.verify
Query Person UIN pr.person.read or cr.person.read
Query Person List pr.person.read or cr.person.read
Read document pr.document.read or cr.document.read
UIN Management
Generate UIN uin.generate
Enrollment Services
Create Enrollment enroll.write
Read Enrollment enroll.read
Update Enrollment enroll.write
Partial Update Enrollment enroll.write
Finalize Enrollment enroll.write
Delete Enrollment enroll.write
Find Enrollments enroll.read
Send Buffer enroll.buf.write
Get Buffer enroll.buf.read
Population Registry Services
Find Persons pr.person.read
Create Person pr.person.write
Read Person pr.person.read
Update Person pr.person.write
Delete Person pr.person.write
Merge Persons pr.person.write
Create Identity pr.identity.write
Read Identity pr.identity.read
Update Identity pr.identity.write
Partial Update Identity pr.identity.write
Delete Identity pr.identity.write
Set Identity Status pr.identity.write
Define Reference pr.reference.write
Read Reference pr.reference.read
Read Galleries pr.gallery.read
Read Gallery Content pr.gallery.read
Biometrics
Create Encounter abis.encounter.write
Read Encounter abis.encounter.read
Update Encounter abis.encounter.write
Delete Encounter abis.encounter.write
Merge Encounter abis.encounter.write
Set Encounter Status abis.encounter.write
Read Template abis.encounter.read
Read Galleries abis.gallery.read
Read Gallery content abis.gallery.read
Identify abis.identify
Verify abis.verify
Credential Services
Create Credential Request cms.request.write
Read Credential Request cms.request.read
Update Credential Request cms.request.write
Delete Credential Request cms.request.write

Continued on next page

3.3. Authorization 23

OSIA, Release 5.0.0

Table 3.1 – continued from previous page
Find Credentials cms.credential.read
Read Credential cms.credential.read
Suspend Credential cms.credential.write
Unsuspend Credential cms.credential.write
Revoke Credential cms.credential.write
Set Credential Status cms.credential.write
Find Credential Profiles cms.profile.read
ID Usage (Work in progress)
Verify ID id.verify
Identify id.identify
Read Attributes id.read
Read Attributes set id.SET_NAME.read

3.3.4 REST Interface Implementation

The OpenAPI files included in this document must be changed to:

1. Define the security scheme. This is done with the additional piece of code:

components:
securitySchemes:

BearerAuth:
type: http
scheme: bearer
bearerFormat: JWT

2. Apply the security scheme and define the scope (i.e. permission) for each service. Example:

paths:
/yyy:

get:
security:

- BearerAuth: [id.read] # List of scopes
responses:

'200':
description: OK

'401':
description: Not authenticated (bad token)

'403':
description: Access token does not have the required scope

See the different YAML files provided in Technical Specifications.

3.4 Privacy by Design

Privacy by design is a founding principle of the OSIA initiative.

The OSIA API is designed to support the protection of private citizens’ Personal Identifiable Information (PII).

The protection of PII data is a central design concern for all identity based systems regardless of where these are
based.

PII data does not recognize geographical boundaries; it moves across systems and jurisdictions. Similarly, the
OSIA initiative is not geographically limited. OSIA takes its strong reference point from the European Union’s
GDPR regulation because this is considered by many as a best practice approach. GDPR anticipates the possible
adverse consequences from the mobility of PII whether inside or outside the EU.

The General Data Protection Regulation (GDPR) is quite recent. It was introduced across the EU in 2016, before
reaching its full legal effect in 2018. It is adopted by all EU governments and carries direct regulatory and legal
force for any organization handling Personal Identifiable Information (PII), either in the EU or in connection with

3.4. Privacy by Design 24

https://swagger.io/docs/specification/authentication/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#securitySchemeObject

OSIA, Release 5.0.0

EU citizens or residents. Compliance failure in respect of GDPR carries significant financial penalties, reflecting
the rights of individuals and groups, as well as the importance of the issue.

GDPR is not the only defined standard, but it is seen as a best practice one. It is exemplary approach for the
safeguarding of PII; but, it should also be seen as a safeguard for a system owner/operator’s interests. It is a major
driver for government leadership in Identity Management is to prevent identity fraud.

3.4.1 Privacy for end-to-end systems

For privacy the bigger goal is to protect PII across the full reach of ID systems. The OSIA API is a fundamental
part and principle of the building process, providing definitions of how components are connected.

This is a part of a wider story. An end-to-end solution making use of the OSIA API should address three specific
areas of concern for PII.

Correct implementation of the API definition

PII data flows through systems. API based connectivity between functional components is by definition a way
of sharing information, which will focus mostly on PII. The OSIA API defines what should happen between
application endpoints involving OSIA framework components. It defines content and a minimum acceptable
security standard for implementation.

PII safeguards within the components connected by the APIs

The API concept is built around functional components: the sub-systems for Identity Management.

As well as the correct implementation or use of the appropriate API, a component should also meet PII require-
ments while this is present within the component. Such internal component design and PII behavior is the respon-
sibility of the component supplier.

The customer architect responsible for an API connected solution should therefore ensure that the internal logic
of an individual component is itself GDPR compliant. The API concept cannot itself provide any guarantee that
components are designed with the same or sufficient internal levels of PII safeguards. What the API can do is to
preserve this level of trust and prevent the creation of new vulnerabilities between these components.

The workflow connecting components in an OSIA enabled solution

OSIA provides a model for an open architecture. An end-to-end identity system may use some, or all of the
OSIA components. It may use additional components to move data through the system. Wherever the system
uses components to move data that are not covered by the OSIA framework definition then these should support
end-to-end security with the same objective of GDPR compliance.

3.4.2 PII actors

The GDPR approach provides simple definitions.

• PII is a very wide category of information. It can be a name, a photo, a biometric, an email address, bank
details, social media postings, medical data, and even an IP address;

• The PII data belongs to a Data Subject who is a natural person that might identified directly or indirectly
using the PII;

• The usage, rules, and means of processing PII are determined by a Data Controller (e.g. the Government
agency);

• The data is processed by a Data Processor.

3.4. Privacy by Design 25

OSIA, Release 5.0.0

When a government department acts as owner of an ID system then it is a Data Controller. It may also act as the
Data Processor if it operates this system ‘in house’.

However, in today’s commercial world the Data Controller is equally likely to delegate some processing to a data
center or to a business service for all or part of the system. In this case these delegated parties are Data Processors,
and they also subject to the PII considerations.

Suppliers of the systems purchased and commissioned by Data Controllers, and operated by Data Processors are
not directly subject to the regulation.

3.4.3 Data subject rights

A GDPR data subject has several rights that should be reflected throughout the wider ID systems architecture.

The right to be forgotten

A subject may ask for her data to be deleted.

Depending on the purpose and the authority of the system this right may be restricted or blocked, however the
deletion of non-essential PII data may be a requirement according to some local laws. The Data Controller should
be able to justify why specific items of PII need to be retained against the subject’s wishes, and when there is no
reason for retention then the automated purging of unnecessary data is generally recommended.

An example impact of this for API usage is where an enrolment client holds enrollee data until receiving a response
via the API from the enrollment server to the effect that any client stored data can be deleted. The Data Processor
operating the client is responsible to ensure this deletion is systematically applied. Typically this may be done
with a configuration in the component product used.

Privacy by design

Systems should be designed to limit data collection, retention and accessibility.

This applies equally to APIs as to the system components themselves. No more data should be passed over an
API than is required. A component passing or receiving data should consider how to minimize what new PII it
collects, shares, and stores. The Data Controller should know by design what data is held and where; as well as
which APIs are sharing what data.

An example of this principle for API usage can be where a credential management system receives PII over an API
for credential production, then deletes the PII once the document is produced successfully. The system may limit
its retained data to production audit data. A credential management system with a different set of responsibilities
defined by the Data Controller may justify the retention of a wider set of PII, which might be replicated elsewhere
in the system. A subject might ask to know where this data sits. The Controller should be able to tell the subject,
and the Processor able to prove it.

Breach notifications

Supervisory powers vary globally. In the EU organizations have to notify their national supervisory authority in
the event of a discovered data breach involving PII. They are given a 72 hour period to do this after becoming
aware of the breach. The purpose of this notice period is to allow the organization to determine the nature and the
impact of the data breach.

Data subjects have the right to be informed about data breaches involving their personal data.

By following the Privacy by Design approach, detection and data exposure can be assessed more accurately and
quickly. Data is typically in transit between sub-systems, then at rest or in use within a given sub-system. When
correctly implemented the OSIA API concept provides assurance against breaches at the API in-transit level.
Combined with the knowledge of what data is stored, and where, this Privacy by Design approach assists in the
detection of breaches.

3.4. Privacy by Design 26

OSIA, Release 5.0.0

At the time of GDPR’s introduction the biggest issuing facing most organizations was not the implementation of
new controls, but the discovery of where and what data was in their possession. The made it very difficult to know
if data was ever compromised.

Risk and impact assessments

Looking at systems overall an organization has to perform a privacy impact assessment.

This describes what PII is collected, and how this is maintained, protected, and shared. This may be done as part
of a wider ISO 27000 process including risk assessment, but this is not mandatory.

Today most providers of components within the OSIA framework will provide such a privacy impact assessment
statement for their products, including the GDPR controls in that product.

Taken together with the OSIA API specification then these assessments can be compiled to an overall statement
of system PII compliance.

Consent

Systems that deal with identity as their core subject matter may not be legally required to obtain consent for the
capture and use of PII data. However, in this service-centric world more and more transactional and contextual
data is captured, so this should not be assumed. If this data is to be collected then organizations have to obtain
valid and explicit consent from the individuals.

The organizations must also be able to prove that they have gotten consent, not forgetting that in the EU individuals
may withdraw their consent.

In the EU additional safeguards apply, where parental consent is required if personal data is to be collected about
children under the age of 16.

An API usually indicates that the use or status of data is changing, so it should always be considered. Passing PII
over an API requires that the consent covers the scope of this data sharing.

An example of this situation might be where an enrolment system captures biometric data to be loaded to a
credential using an API. The Data Controller later decides that the same captured data will be passed via a new
API to a biometric matching system. Both the Data Controller and Processor might find that they are processing
this data contrary to the principle of consent. If consent matters in this case then the introduction of the new
API may alert the user to a change of use. This is not to say that such changes only happen where APIs are
concerned, but the OSIA API framework does represent different functions across Identity Management, and
therefore indicates that consent may be a relevant consideration.

Data portability

The portability of requirement was conceived for both transparency and commercial reasons.

PII held should be usable by the Data Subject upon request. For privacy it may be held encrypted in the Data
Processor system, but must be provided in a structured and commonly useable format to the Data Subject under
reasonable terms of access.

An example scenario might be where a Data Subject wishes to have a copy of a child’s birth record in a printed
format or a format recognized by a third party. The concept of data portability may in some cases be implemented
by a report service, or in some cases use an OSIA API to support the retrieval of personal attribute data to meet
this demand.

3.4.4 What should OSIA API implementors do to prepare for safe PII?

1. Appoint someone as the organization’s own GDPR or PII data expert. Someone who understands the Data
Controller business requirements, and knows the technologies likely to be used for data processing.

3.4. Privacy by Design 27

OSIA, Release 5.0.0

2. GDPR is a good example of best practice in PII Management, but it is vital to understand the current local
regulatory environment. Local existing laws and regulations take precedence unless subject to GDPR, and
even then local laws may be stricter.

3. Use the OSIA API specification to understand the security organization of functional systems that might
be needed and document an overall assessment of the PII privacy risk. Pay particular attention to sensitive
data, and to the aggregation of PII.

4. Ensure that component suppliers understand and support the principles of good PII management, or GDPR.
Most suppliers provide a description of how this is enforced in their products or systems. They may even
provide a user manual and training for this function.

5. Document the design and lifecycle of data in the end-to-end system. The OSIA API Specification will help
with this. It does not provide the full PII story, but it does provide the basis for the parts between components
that the customer or its systems integrator will be responsible for.

6. Consider the Data Subject consent requirements, based on the functions that subject data will be subject to.

7. If the role is Data Controller, but not Data Processor then ensure that the organization used for Data Pro-
cessing can understand and meet the guidelines for PII protection.

8. Remember that good planning and execution are essential, but it might be asked to prove correct operation.
Systems logs and audit data should be available. This should include API usage to indicate where data has
been transferred.

3.4. Privacy by Design 28

CHAPTER 4

OSIA Versions & Referencing

There will be a version for each interface. Each interface can be referenced in tenders as follows:

OSIA v. [version] - [interface name] v. [version number]

For instance below is the string to reference the Notification interface:

OSIA v. 2.0 - Notification v. 1.0.0

Below is the complete list of available interfaces with related versions:

OSIA Release 1.0.0 2.0.0 3.0.0 4.1.0 5.0.0
OSIA Release Date mar-2019 jun-2019 nov-2019 jul-2020 dec-2020
Notification . 1.0.0 1.0.0 1.1.0 1.2.0
UIN Management 1.0.0 1.0.0 1.0.0 1.1.0 1.2.0
Data Access 1.0.0 1.0.0 1.0.0 1.1.0 1.3.0
Enrollment Services . . . 1.0.0 1.1.0
Population Registry Services . . 1.0.0 1.2.0 1.3.0
Biometrics Services . 1.0.0 1.1.0 1.3.0 1.4.0
Credential Services . . . 1.0.0 1.1.0
Relying Party Services . . . 1.0.0

29

CHAPTER 5

Interfaces

The chapter below describes the specifications of all OSIA interfaces and related services.

5.1 Notification

See Notification for the technical details of this interface.

The subscription & notification process is managed by a middleware and is described in the following diagram:

30

OSIA, Release 5.0.0

Fig. 5.1: Subscription & Notification Process

5.1.1 Services

For the Subscriber

subscribe(topic, URL)
Subscribe a URL to receive notifications sent to one topic

Authorization: notif.sub.write

Parameters

• topic (str) – Topic

• URL (str) – URL to be called when a notification is available

Returns a subscription ID

This service is synchronous.

listSubscriptions()
Get all subscriptions

Authorization: notif.sub.read

Parameters URL (str) – URL to be called when a notification is available

Returns a subscription ID

This service is synchronous.

5.1. Notification 31

OSIA, Release 5.0.0

unsubscribe(id)
Unsubscribe a URL from the list of receiver for one topic

Authorization: notif.sub.write

Parameters id (str) – Subscription ID

Returns bool

This service is synchronous.

confirm(token)
Used to confirm that the URL used during the subscription is valid

Authorization: notif.sub.write

Parameters token (str) – A token send through the URL.

Returns bool

This service is synchronous.

For the Publisher

createTopic(topic)
Create a new topic. This is required before an event can be sent to it.

Authorization: notif.topic.write

Parameters topic (str) – Topic

Returns N/A

This service is synchronous.

listTopics()
Get the list of all existing topics.

Authorization: notif.topic.read

Returns N/A

This service is synchronous.

deleteTopic(topic)
Delete a topic.

Authorization: notif.topic.write

Parameters topic (str) – Topic

Returns N/A

This service is synchronous.

publish(topic, subject, message)
Notify of a new event all systems that subscribed to this topic

Authorization: notif.topic.publish

Parameters

• topic (str) – Topic

• subject (str) – The subject of the message

• message (str) – The message itself (a string buffer)

Returns N/A

This service is asynchronous (systems that subscribed on this topic are notified asynchronously).

5.1. Notification 32

OSIA, Release 5.0.0

5.1.2 Dictionaries

As an example, below there is a list of events that each component might handle.

Table 5.1: Event Type
Event Type Emitted by CR Emitted by PR
Live birth XXX
Death XXX
Fœtal Death XXX
Marriage XXX
Divorce XXX
Annulment XXX
Separation, judicial XXX
Adoption XXX
Legitimation XXX
Recognition XXX
Change of name XXX
Change of gender XXX
New person XXX
Duplicate person XXX XXX

5.2 Data Access

See Data Access for the technical details of this interface.

5.2.1 Services

readPersonAttributes(UIN, names)
Read person attributes.

Authorization: pr.person.read or cr.person.read

Parameters

• UIN (str) – The person’s UIN

• names (list[str]) – The names of the attributes requested

Returns a list of pair (name,value). In case of error (unknown attributes, unauthorized access,
etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

Fig. 5.2: readPersonAttributes Sequence Diagram

5.2. Data Access 33

OSIA, Release 5.0.0

matchPersonAttributes(UIN, attributes)
Match person attributes. This service is used to check the value of attributes without exposing private data.
The implementation can use a simple comparison or a more advanced technique (for example: phonetic
comparison for names)

Authorization: pr.person.match or cr.person.match

Parameters

• UIN (str) – The person’s UIN

• attributes (list[(str,str)]) – The attributes to match. Each attribute is
described with its name and the expected value

Returns If all attributes match, a Yes is returned. If one attribute does not match, a No is returned
along with a list of (name,reason) for each non-matching attribute.

This service is synchronous. It can be used to match attributes in CR or in PR.

Fig. 5.3: matchPersonAttributes Sequence Diagram

verifyPersonAttributes(UIN, expressions)
Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s at-
tributes without exposing private data The implementation can use a simple comparison or a more advanced
technique (for example: phonetic comparison for names)

Authorization: pr.person.verify or cr.person.verify

Parameters

• UIN (str) – The person’s UIN

• expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=)
and the attribute value

Returns A Yes if all expressions are true, a No if one expression is false, a Unknown if
To be defined

This service is synchronous. It can be used to verify attributes in CR or in PR.

5.2. Data Access 34

OSIA, Release 5.0.0

Fig. 5.4: verifyPersonAttributes Sequence Diagram

queryPersonUIN(attributes, offset, limit)
Query the persons by a set of attributes. This service is used when the UIN is unknown. The implementation
can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: pr.person.read or cr.person.read

Parameters

• attributes (list[(str,str)]) – The attributes to be used to find UIN. Each
attribute is described with its name and its value

• offset (int) – The offset of the query (first item of the response) (optional, default
to 0)

• limit (int) – The maximum number of items to return (optional, default to 100)

Returns a list of matching UIN

This service is synchronous. It can be used to get the UIN of a person.

Fig. 5.5: queryPersonUIN Sequence Diagram

queryPersonList(attributes, names, offset, limit)
Query the persons by a list of attributes and their values. This service is proposed as an optimization of a
sequence of calls to queryPersonUIN() and readPersonAttributes().

Authorization: pr.person.read or cr.person.read

Parameters

• attributes (list[(str,str)]) – The attributes to be used to find the persons.
Each attribute is described with its name and its value

5.2. Data Access 35

OSIA, Release 5.0.0

• names (list[str]) – The names of the attributes requested

• offset (int) – The offset of the query (first item of the response) (optional, default
to 0)

• limit (int) – The maximum number of items to return (optional, default to 100)

Returns a list of lists of pairs (name,value). In case of error (unknown attributes, unauthorized
access, etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

Fig. 5.6: queryPersonList Sequence Diagram

readDocument(UINs, documentType, format)
Read in a selected format (PDF, image, . . .) a document such as a marriage certificate.

Authorization: pr.document.read or cr.document.read

Parameters

• UIN (list[str]) – The list of UINs for the persons concerned by the document

• documentType (str) – The type of document (birth certificate, etc.)

• format (str) – The format of the returned/requested document

Returns The list of the requested documents

This service is synchronous. It can be used to get the documents for a person.

Fig. 5.7: readDocument Sequence Diagram

5.2.2 Dictionaries

As an example, below there is a list of attributes/documents that each component might handle.

5.2. Data Access 36

OSIA, Release 5.0.0

Table 5.2: Person Attributes
Attribute Name In CR In PR Description
UIN XXX XXX
first name XXX XXX
last name XXX XXX
spouse name XXX XXX
date of birth XXX XXX
place of birth XXX XXX
gender XXX XXX
date of death XXX XXX
place of death XXX
reason of death XXX
status XXX Example: missing, wanted, dead, etc.

Table 5.3: Certificate Attributes
Attribute Name In CR In PR Description
officer name XXX
number XXX
date XXX
place XXX
type XXX

Table 5.4: Union Attributes
Attribute Name In CR In PR Description
date of union XXX
place of union XXX
conjoint1 UIN XXX
conjoint2 UIN XXX
date of divorce XXX

Table 5.5: Filiation Attributes
Attribute Name In CR In PR Description
parent1 UIN XXX
parent2 UIN XXX

Table 5.6: Document Type
Document Type Description
birth certificate To be completed

death certificate To be completed

marriage certificate To be completed

5.3 UIN Management

See UIN Management for the technical details of this interface.

5.3.1 Services

generateUIN(attributes, transactionID)
Generate a new UIN.

5.3. UIN Management 37

OSIA, Release 5.0.0

Authorization: uin.generate

Parameters

• attributes (list[(str,str)]) – A list of pair (attribute name, value) that can
be used to allocate a new UIN

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a new UIN or an error if the generation is not possible

This service is synchronous.

Fig. 5.8: generateUIN Sequence Diagram

5.4 Enrollment Services

This interface describes enrollment services in the context of an identity system. It is based on the following
principles:

• When enrollment is done in one step, the CreateEnrollment can contain all the data and an additional flag
(finalize) to indicate all data was collected.

• During the process, enrollment structure can be updated. Only the data that changed need to be transferred.
Data not included is left unchanged on the server. In the following example, the biographic data is not
changed.

• Images can be passed by value or reference. When passed by value, they are base64-encoded.

• Existing standards are used whenever possible, for instance preferred image format for biometric data is
ISO-19794.

About documents

Adding one document or deleting one document implies that:

• The full document list is read (ReadEnrollment)

• The document list is altered locally to the enrollment client (add or delete)

• The full document list is sent back using the UpdateEnrollment service

5.4.1 Services

createEnrollment(enrollmentID, enrollmentTypeId, enrollmentFlags, requestData, contextualData,
biometricData, biographicData, documentData, finalize, transactionID)

Insert a new enrollment.

5.4. Enrollment Services 38

OSIA, Release 5.0.0

Authorization: enroll.write

Parameters

• enrollmentID (str) – The ID of the enrollment. If the enrollment already exists
for the ID an error is returned.

• enrollmentTypeId (str) – The enrollment type ID of the enrollment.

• enrollmentFlags (dict) – The enrollment custom flags.

• requestData (dict) – The enrollment data related to the enrollment itself.

• contextualData (dict) – Information about the context of the enrollment

• biometricData (list) – The enrollment biometric data.

• biographicData (dict) – The enrollment biographic data.

• documentData (list) – The enrollment biometric data.

• finalize (str) – Flag to indicate that data was collected.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

readEnrollment(enrollmentID, attributes, transactionID)
Retrieve the attributes of an enrollment.

Authorization: enroll.read

Parameters

• enrollmentID (str) – The ID of the enrollment.

• attributes (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error and in case of success the enrollment data.

updateEnrollment(enrollmentID, enrollmentTypeId, enrollmentFlags, requestData, contextualData,
biometricData, biographicData, documentData, finalize, transactionID)

Update an enrollment.

Authorization: enroll.write

Parameters

• enrollmentID (str) – The ID of the enrollment. If the enrollment already exists
for the ID an error is returned.

• enrollmentTypeId (str) – The enrollment type ID of the enrollment.

• enrollmentFlags (dict) – The enrollment custom flags.

• requestData (dict) – The enrollment data related to the enrollment itself.

• contextualData (dict) – Information about the context of the enrollment

• biometricData (list) – The enrollment biometric data, this can be partial data.

• biographicData (dict) – The enrollment biographic data.

• documentData (list) – The enrollment biometric data, this can be partial data.

• finalize (str) – Flag to indicate that data was collected.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

5.4. Enrollment Services 39

OSIA, Release 5.0.0

partialupdateEnrollment(enrollmentID, enrollmentTypeId, enrollmentFlags, requestData, con-
textualData, biometricData, biographicData, documentData, finalize,
transactionID)

Update part of an enrollment. Not all attributes are mandatory. The payload is defined as per RFC 7396.

Authorization: enroll.write

Parameters

• enrollmentID (str) – The ID of the enrollment. If the enrollment already exists
for the ID an error is returned.

• enrollmentTypeId (str) – The enrollment type ID of the enrollment.

• enrollmentFlags (dict) – The enrollment custom flags.

• requestData (dict) – The enrollment data related to the enrollment itself.

• contextualData (dict) – Information about the context of the enrollment

• biometricData (list) – The enrollment biometric data, this can be partial data.

• biographicData (dict) – The enrollment biographic data.

• documentData (list) – The enrollment biometric data, this can be partial data.

• finalize (str) – Flag to indicate that data was collected.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

finalizeEnrollment(enrollmentID, transactionID)
When all the enrollment steps are done, the enrollment client indicates to the enrollment server that all data
has been collected and that any further processing can be triggered.

Authorization: enroll.write

Parameters

• enrollmentID (str) – The ID of the enrollment.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

deleteEnrollment(enrollmentID, transactionID)
Deletes the enrollment

Authorization: enroll.write

Parameters

• enrollmentID (str) – The ID of the enrollment.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

findEnrollments(expressions, offset, limit, transactionID)
Retrieve a list of enrollments which match passed in search criteria.

Authorization: enroll.read

Parameters

• expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=)
and the attribute value

• offset (int) – The offset of the query (first item of the response) (optional, default
to 0)

• limit (int) – The maximum number of items to return (optional, default to 100)

5.4. Enrollment Services 40

https://tools.ietf.org/html/rfc7396.html

OSIA, Release 5.0.0

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error and in case of success the matching enrollment list.

createBuffer(enrollmentId, data, digest)
This service is used to send separately the buffers of the images. Buffers can be sent any time from the
enrollment client prior to the create or update.

Authorization: enroll.buf.write

Parameters

• enrollmentID (str) – The ID of the enrollment.

• data (image) – The buffer data.

• transactionID (string) – The client generated transactionID.

• digest (string) – The digest (hash) of the buffer used by the server to check the
integrity of the data received.

Returns a status indicating success or error and in case of success the buffer ID.

readBuffer(enrollmentId, bufferId)
This service is used to get the data of a buffer.

Authorization: enroll.buf.read

Parameters

• enrollmentID (str) – The ID of the enrollment.

• bufferID (str) – The ID of the buffer.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error and in case of success the data of the buffer and a
digest.

5.4.2 Attributes

The “attributes” parameter used in “read” calls is used to provide a set of identifiers that limit the amount of data
that is returned. It is often the case that the whole data set is not required, but instead, a subset of that data. Where
possible, existing standards based identifiers should be used for the attributes to retrieve.

E.g. For surname/familyname, use OID 2.5.4.4 or id-at-surname.

Some calls may require new attributes to be defined. E.g. when retrieving biometric data, the caller may only want
the meta data about that biometric, rather than the actual biometric data.

5.4.3 Transaction ID

The transactionID is a string provided by the client application to identity the request being submitted. It
can be used for tracing and debugging.

5.4. Enrollment Services 41

OSIA, Release 5.0.0

5.4.4 Data Model

Table 5.7: Enrolment Data Model
Type Description Example
Enrollment Set of person data which are captured. TBD
Document Data The document data of the enrollment. TBD
Biometric Data Digital representation of biometric characteristics.

All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait, iris or signature.
A biometric data can be associated to no image or a
partial image if it includes information about the miss-
ing items (example: one finger may be amputated on
a 4 finger image)

fingerprint, portrait, iris,
signature

Biographic Data a dictionary (list of names and values) giving the bio-
graphic data of interest for the biometric services.

TBD

Enrollment Flags a dictionary (list of names and values) for custom
flags.

TBD

Request Data a dictionary (list of names and values) for data related
to the enrollment itself (the operator, the station, the
data, etc.).

TBD

Contextual Data A dictionary (list of names and values) attached to the
context of establishing the identity

operatorName,
enrollmentDate,
etc.

Attributes a dictionary (list of names and values or range of
values) describing the attributes to return. Attributes
can apply on biographic data, document data, request
data, or enrollment flag data.

TBD

Expressions Each expression is described with the attribute’s
name, the operator (one of <, >, =, >=, <=, !=) and
the attribute value

TBD

5.4. Enrollment Services 42

OSIA, Release 5.0.0

Fig. 5.9: Enrollment Data Model

5.5 Population Registry Services

This interface describes services to manage a registry of the population in the context of an identity system. It is
based on the following principles:

• It supports a history of identities, meaning that a person has one identity and this identity has a history.

• Images can be passed by value or reference. When passed by value, they are base64-encoded.

• Existing standards are used whenever possible.

• This interface is complementary to the data access interface. The data access interface is used to query the
persons and uses the reference identity to return attributes.

• The population registry can store the biometric data or can rely on the ABIS subsystem to do it. The
preferred solution, for a clean separation of data of different nature and by application of GDPR principles,
is to put the biometric data only in the ABIS. Yet many existing systems store biometric data with the
biographic data and this specification gives the flexibility to do it.

See Population Registry Management for the technical details of this interface.

5.5.1 Services

findPersons(expressions, group, reference, gallery, offset, limit, transactionID)
Retrieve a list of persons which match passed in search criteria.

Authorization: pr.person.read

Parameters

• expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=)
and the attribute value

• group (bool) – Group the results per person and return only personID

5.5. Population Registry Services 43

OSIA, Release 5.0.0

• reference (bool) – Limit the query to the reference identities

• gallery (string) – A gallery ID used to limit the search

• offset (int) – The offset of the query (first item of the response) (optional, default
to 0)

• limit (int) – The maximum number of items to return (optional, default to 100)

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error and in case of success the matching person list.

createPerson(personID, personData, transactionID)
Create a new person.

Authorization: pr.person.write

Parameters

• personID (str) – The ID of the person. If the person already exists for the ID an
error is returned.

• personData – The person attributes.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readPerson(personID, transactionID)
Read the attributes of a person.

Authorization: pr.person.read

Parameters

• personID (str) – The ID of the person.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error and in case of success the person data.

updatePerson(personID, personData, transactionID)
Update a person.

Authorization: pr.person.write

Parameters

• personID (str) – The ID of the person.

• personData (dict) – The person data.

Returns a status indicating success or error.

deletePerson(personID, transactionID)
Delete a person and all its identities.

Authorization: pr.person.write

Parameters

• personID (str) – The ID of the person.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

5.5. Population Registry Services 44

OSIA, Release 5.0.0

mergePerson(personID1, personID2, transactionID)
Merge two person records into a single one. Identity ID are preserved and in case of duplicates an error is
returned and no changes are done. The reference identity is not changed.

Authorization: pr.person.write

Parameters

• personID1 (str) – The ID of the person that will receive new identities

• personID2 (str) – The ID of the person that will give its identities. It will be deleted
if the move of all identities is successful.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

createIdentity(personID, identityID, identity, transactionID)
Create a new identity in a person. If no identityID is provided, a new one is generated. If identityID
is provided, it is checked for uniqueness and used for the identity if unique. An error is returned if the
provided identityID is not unique.

Authorization: pr.identity.write

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity.

• identity – The new identity data.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readIdentity(personID, identityID, transactionID)
Read one or all the identities of one person.

Authorization: pr.identity.read

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity. If not provided, all identities are re-
turned.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error, and in case of success a list of identities.

updateIdentity(personID, identityID, identity, transactionID)
Update an identity. An identity can be updated only in the status claimed.

Authorization: pr.identity.write

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity.

• identity – The identity data.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

5.5. Population Registry Services 45

OSIA, Release 5.0.0

Returns a status indicating success or error.

partialUpdateIdentity(personID, identityID, identity, transactionID)
Update part of an identity. Not all attributes are mandatory. The payload is defined as per RFC 7396. An
identity can be updated only in the status claimed.

Authorization: pr.identity.write

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity.

• identity – Part of the identity data.

Returns a status indicating success or error.

deleteIdentity(personID, identityID, transactionID)
Delete an identity.

Authorization: pr.identity.write

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

setIdentityStatus(personID, identityID, status, transactionID)
Set an identity status.

Authorization: pr.identity.write

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity.

• status (str) – The new status of the identity.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

defineReference(personID, identityID, transactionID)
Define the reference identity of one person.

Authorization: pr.reference.write

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity being now the reference.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readReference(personID, transactionID)
Read the reference identity of one person.

Authorization: pr.reference.read

5.5. Population Registry Services 46

https://tools.ietf.org/html/rfc7396.html

OSIA, Release 5.0.0

Parameters

• personID (str) – The ID of the person.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error and in case of success the reference identity.

readGalleries(transactionID)
Read the ID of all the galleries.

Authorization: pr.gallery.read

Parameters transactionID (str) – A free text used to track the system activities related
to the same transaction.

Returns a status indicating success or error, and in case of success a list of gallery ID.

readGalleryContent(galleryID, transactionID, offset, limit)
Read the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: pr.gallery.read

Parameters

• galleryID (str) – Gallery whose content will be returned.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• offset (int) – The offset of the query (first item of the response) (optional, default
to 0)

• limit (int) – The maximum number of items to return (optional, default to 1000)

Returns a status indicating success or error. In case of success a list of person/identity IDs.

5.5. Population Registry Services 47

OSIA, Release 5.0.0

5.5. Population Registry Services 48

OSIA, Release 5.0.0

5.5.2 Data Model

Table 5.8: Population Registry Data Model
Type Description Example
Gallery A group of persons related by a common purpose,

designation, or status. A person can belong to mul-
tiple galleries.

VIP, Wanted, etc.

Person Person who is known to an identity assurance system.
A person record has:

• a status, such as active or inactive, defin-
ing the status of the record (the record can be
excluded from queries based on this status),

• a physical status, such as alive or dead,
defining the status of the person,

• a set of identities, keeping track of all identity
data submitted by the person during the life of
the system,

• a reference identity, i.e. a consolidated view
of all the identities defining the current correct
identity of the person. It corresponds usually to
the last valid identity but it can also include data
from previous identities.

N/A

Identity The attributes describing an identity of a person.
An identity has a status such as: claimed (iden-
tity not yet validated), valid (the identity is valid),
invalid (the identity is confirmed as not valid),
revoked (the identity cannot be used any longer).
An identity can be updated only in the status
claimed.
The proposed transitions for the status are represented
below. It can be adapted if needed.

The attributes are separated into two categories: the
biographic data and the contextual data.

N/A

Biographic Data A dictionary (list of names and values) giving the bi-
ographic data of the identity

firstName,
lastName,
dateOfBirth, etc.

Contextual Data A dictionary (list of names and values) attached to the
context of establishing the identity

operatorName,
enrollmentDate,
etc.

Biometric Data Digital representation of biometric characteristics.
All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait, iris or signature.
A biometric data can be associated to no image or a
partial image if it includes information about the miss-
ing items (example: one finger may be amputated on
a 4 finger image)

fingerprint, portrait, iris,
signature

Document The document data (images) attached to the identity
and used to validate it.

Birth certificate, invoice

5.5. Population Registry Services 49

OSIA, Release 5.0.0

Fig. 5.10: Population Registry Data Model

5.6 Biometrics

This interface describes biometric services in the context of an identity system. It is based on the following
principles:

• It supports only multi-encounter model, meaning that an identity can have multiple set of biometric data,
one for each encounter.

• It does not expose templates (only images) for CRUD services, with one exception to support the use case
of credentials with biometrics.

• Images can be passed by value or reference. When passed by value, they are base64-encoded.

• Existing standards are used whenever possible, for instance preferred image format for biometric data is
ISO-19794.

About synchronous and asynchronous processing

Some services can be very slow depending on the algorithm used, the system workload, etc. Services are described
so that:

• If possible, the answer is provided synchronously in the response of the service.

• If not possible for some reason, a status PENDING is returned and the answer, when available, is pushed to
a callback provided by the client.

If no callback is provided, this indicates that the client wants a synchronous answer, whatever the time it takes.

5.6. Biometrics 50

OSIA, Release 5.0.0

If a callback is provided, this indicates that the client wants an asynchronous answer, even if the result is immedi-
ately available.

See Biometrics for the technical details of this interface.

5.6.1 Services

createEncounter(personID, encounterID, galleryID, biographicData, contextualData, biometric-
Data, clientData, callback, transactionID, options)

Create a new encounter. No identify is performed.

Authorization: abis.encounter.write

Parameters

• personID (str) – The person ID. This is optional and will be generated if not pro-
vided

• encounterID (str) – The encounter ID. This is optional and will be generated if
not provided

• galleryID (list(str)) – the gallery ID to which this encounter belongs. A min-
imum of one gallery must be provided

• biographicData (dict) – The biographic data (ex: name, date of birth, gender,
etc.)

• contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

• biometricData (list) – the biometric data (images)

• clientData (bytes) – additional data not interpreted by the server but stored as is
and returned when encounter data is requested.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
algorithm.

Returns a status indicating success, error, or pending operation. In case of success, the person
ID and the encounter ID are returned. In case of pending operation, the result will be sent
later.

readEncounter(personID, encounterID, callback, transactionID, options)
Read the data of an encounter.

Authorization: abis.encounter.read

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the person are returned.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of success, the en-
counter data is returned. In case of pending operation, the result will be sent later.

5.6. Biometrics 51

OSIA, Release 5.0.0

updateEncounter(personID, encounterID, galleryID, biographicData, contextualData, biometric-
Data, callback, transactionID, options)

Update an encounter.

Authorization: abis.encounter.write

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID

• galleryID (list(str)) – the gallery ID to which this encounter belongs. A min-
imum of one gallery must be provided

• biographicData (dict) – The biographic data (ex: name, date of birth, gender,
etc.)

• contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

• biometricData (list) – the biometric data (images)

• clientData (bytes) – additional data not interpreted by the server but stored as is
and returned when encounter data is requested.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
algorithm.

Returns a status indicating success, error, or pending operation. In case of success, the person
ID and the encounter ID are returned. In case of pending operation, the result will be sent
later.

deleteEncounter(personID, encounterID, callback, transactionID, options)
Delete an encounter.

Authorization: abis.encounter.write

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the person are deleted.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of pending operation,
the operation status will be sent later.

mergeEncounter(personID1, personID2, callback, transactionID, options)
Merge two sets of encounters into a single set. Merging a set of N encounters with a set of M encounters
will result in a single set of N+M encounters. Encounter ID are preserved and in case of duplicates an error
is returned and no changes are done.

Authorization: abis.encounter.write

Parameters

• personID1 (str) – The ID of the person that will receive new encounters

• personID2 (str) – The ID of the person that will give its encounters

5.6. Biometrics 52

OSIA, Release 5.0.0

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of pending operation,
the result will be sent later.

readTemplate(personID, encounterID, biometricType, biometricSubType, templateFormat, qualityFor-
mat, callback, transactionID, options)

Read the generated template.

Authorization: abis.encounter.read

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID.

• biometricType (str) – The type of biometrics to consider (optional)

• biometricSubType (str) – The subtype of biometrics to consider (optional)

• templateFormat (str) – the format of the template to return (optional)

• qualityFormat (str) – the format of the quality to return (optional)

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of success, a list of
template data is returned. In case of pending operation, the result will be sent later.

setEncounterStatus(personID, encounterID, status, transactionID)
Set an encounter status.

Authorization: abis.encounter.write

Parameters

• personID (str) – The ID of the person.

• encounterID (str) – The encounter ID.

• status (str) – The new status of the encounter.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readGalleries(callback, transactionID, options)
Read the ID of all the galleries.

Authorization: abis.gallery.read

Parameters

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

5.6. Biometrics 53

OSIA, Release 5.0.0

Returns a status indicating success, error, or pending operation. A list of gallery ID is returned,
either synchronously or using the callback.

readGalleryContent(galleryID, callback, transactionID, offset, limit, options)
Read the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: abis.gallery.read

Parameters

• galleryID (str) – Gallery whose content will be returned.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• offset (int) – The offset of the query (first item of the response) (optional, default
to 0)

• limit (int) – The maximum number of items to return (optional, default to 1000)

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. A list of persons/encounters is
returned, either synchronously or using the callback.

identify(galleryID, filter, biometricData, callback, transactionID, options)
Identify a person using biometrics data and filters on biographic or contextual data. This may include
multiple operations, including manual operations.

Authorization: abis.identify

Parameters

• galleryID (str) – Search only in this gallery.

• filter (dict) – The input data (filters and biometric data)

• biometricData – the biometric data.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A list of candidates is returned,
either synchronously or using the callback.

identify(galleryID, filter, personID, callback, transactionID, options)
Identify a person using biometrics data of a person existing in the system and filters on biographic or
contextual data. This may include multiple operations, including manual operations.

Authorization: abis.verify

Parameters

• galleryID (str) – Search only in this gallery.

• filter (dict) – The input data (filters and biometric data)

• personID – the person ID

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

5.6. Biometrics 54

OSIA, Release 5.0.0

• options (dict) – the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A list of candidates is returned,
either synchronously or using the callback.

verify(galleryID, personID, biometricData, callback, transactionID, options)
Verify an identity using biometrics data.

Authorization: To be defined

Parameters

• galleryID (str) – Search only in this gallery. If the person does not belong to this
gallery, an error is returned.

• personID (str) – The person ID

• biometricData – The biometric data

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A status (boolean) is returned,
either synchronously or using the callback. Optionally, details about the matching result can
be provided like the score per biometric and per encounter.

verify(biometricData1, biometricData2, callback, transactionID, options)
Verify that two sets of biometrics data correspond to the same person.

Authorization: To be defined

Parameters

• biometricData1 – The first set of biometric data

• biometricData2 – The second set of biometric data

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A status (boolean) is returned,
either synchronously or using the callback. Optionally, details about the matching result can
be provided like the score per the biometric.

5.6. Biometrics 55

OSIA, Release 5.0.0

5.6.2 Options

Table 5.9: Biometric Services Options
Name Description
priority Priority of the request. Values range from 0 to 9. 0 indicates the lowest priority,

9 indicates the highest priority.
maxNbCand The maximum number of candidates to return.
threshold The threshold to apply on the score to filter the candidates during an identification,

authentication or verification.
algorithm Specify the type of algorithm to be used.
accuracyLevel Specify the accuracy expected of the request. This is to support different use cases,

when different behavior of the ABIS is expected (response time, accuracy, consol-
idation/fusion, etc.).

5.6. Biometrics 56

OSIA, Release 5.0.0

5.6.3 Data Model

Table 5.10: Biometric Data Model
Type Description Example
Gallery A group of persons related by a common purpose,

designation, or status. A person can belong to mul-
tiple galleries.

TBD

Person Person who is known to an identity assurance system. TBD
Encounter Event in which the client application interacts with

a person resulting in data being collected during or
about the encounter. An encounter is characterized by
an identifier and a type (also called purpose in some
context).
An encounter has a status indicating if this encounter
is used in the biometric searches. Allowed values are
active or inactive.

TBD

Biographic Data a dictionary (list of names and values) giving the bio-
graphic data of interest for the biometric services.

TBD

Filters a dictionary (list of names and values or range of val-
ues) describing the filters during a search. Filters can
apply on biographic data, contextual data or encounter
type.

TBD

Biometric Data Digital representation of biometric characteristics.
All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait, iris or signature.
A biometric data can be associated to no image or a
partial image if it includes information about the miss-
ing items (example: one finger may be amputated on
a 4 finger image)

fingerprint, portrait, iris,
signature

Candidate Information about a candidate found during an identi-
fication

TBD

CandidateScore Detailed information about a candidate found during
an identification. It includes the score for the biomet-
rics used. It can also be extended with proprietary
information to better describe the matching result (for
instance: rotation needed to align the probe and the
candidate)

TBD

Template A computed buffer corresponding to a biometric and
allowing the comparison of biometrics. A template
has a format that can be a standard format or a vendor-
specific format.

N/A

5.6. Biometrics 57

OSIA, Release 5.0.0

Fig. 5.11: Biometric Data Model

5.7 Credential Services

This interface describes services to manage credentials and credential requests in the context of an identity system.

5.7.1 Services

createCredentialRequest(personID, credentialProfileID, additionalData, transactionID)
Request issuance of a secure credential.

Authorization: cms.request.write

Parameters

• personID (str) – The ID of the person.

• credentialProfileID (str) – The ID of the credential profile to issue to the
person.

• additionalData (dict) – Additional data relating to the requested credential pro-
file, e.g. credential lifetime if overriding default, delivery addresses, etc.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error. In the case of success, a credential request identifier.

readCredentialRequest(credentialRequestID, attributes, transactionID)
Retrieve the data/status of a credential request.

Authorization: cms.request.read

Parameters

• credentialRequestID (str) – The ID of the credential request.

5.7. Credential Services 58

OSIA, Release 5.0.0

• attributes (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error, and in case of success the issuance data/status.

updateCredentialRequest(credentialRequestID, additionalData, transactionID)
Update the requested issuance of a secure credential.

Authorization: cms.request.write

Parameters

• credentialRequestID (str) – The ID of the credential request.

• transactionID (string) – The client generated transactionID.

• additionalData (dict) – Additional data relating to the requested credential pro-
file, e.g. credential lifetime if overriding default, delivery addresses, etc.

Returns a status indicating success or error.

deleteCredentialRequest(credentialRequestID, transactionID)
Delete/cancel the requested issuance of a secure credential.

Authorization: cms.request.write

Parameters

• credentialRequestID (str) – The ID of the credential request.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

findCredentials(expressions, transactionID)
Retrieve a list of credentials that match the passed in search criteria.

Authorization: cms.credential.read

Parameters

• expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=)
and the attribute value.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error, in the case of success the list of matching creden-
tials.

readCredential(credentialID, attributes, transactionID)
Retrieve the attributes/status of an issued credential. A wide range of information may be returned, depen-
dant on the type of credential that was issued, smart card, mobile, passport, etc.

Authorization: cms.credential.read

Parameters

• credentialID (str) – The ID of the credential.

• attributes (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error, in the case of success the requested data will be
returned.

5.7. Credential Services 59

OSIA, Release 5.0.0

suspendCredential(credentialID, additionalData, transactionID)
Suspend an issued credential. For electronic credentials this will suspend any PKI certificates that are
present.

Authorization: cms.credential.write

Parameters

• credentialID (str) – The ID of the credential.

• additionalData (dict) – Additional data relating to the request, e.g. reason for
suspension.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

unsuspendCredential(credentialID, additionalData, transactionID)
Unsuspend an issued credential. For electronic credentials this will unsuspend any PKI certificates that are
present.

Authorization: cms.credential.write

Parameters

• credentialID (str) – The ID of the credential.

• additionalData (dict) – Additional data relating to the request, e.g. reason for
unsuspension.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

revokeCredential(credentialID, additionalData, transactionID)
Revoke an issued credential. For electronic credentials this will revoke any PKI certificates that are present.

Authorization: cms.credential.write

Parameters

• credentialID (str) – The ID of the credential.

• additionalData (dict) – Additional data relating to the request, e.g. reason for
revocation.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

setCredentialStatus(credentialID, status, reason, requester, comment, transactionID)
Change the status of a credential. This is an extension of the revoke/suspend services, supporting more
statuses and transitions.

Authorization: cms.credential.write

Parameters

• credentialID (str) – The ID of the credential.

• status (string) – The new status of the credential

• reason (string) – A text describing the cause of the change of status

• requester (string) – The client generated transactionID.

• comment (string) – A free text comment

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

5.7. Credential Services 60

OSIA, Release 5.0.0

findCredentialProfiles(expressions, transactionID)
Retrieve a list of credential profils that match the passed in search criteria

Authorization: cms.profile.read

Parameters

• expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=,
!=) and the attribute value

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error, and in case of success the matching credential
profile list.

5.7.2 Attributes

The “attributes” parameter used in “read” calls is used to provide a set of identifiers that limit the amount of data
that is returned. It is often the case that the whole data set is not required, but instead, a subset of that data. @@
-128,7 +128,7 @@ attributes to retrieve.

E.g. For surname/familyname, use OID 2.5.4.4 or id-at-surname.

Some calls may require new attributes to be defined. E.g. when retrieving biometric data, the caller may only want
the meta data about that biometric, rather than the actual biometric data.

5.7.3 Data Model

Table 5.11: Credential Data Model
Type Description Example
Credential The attributes of the credential itself

The proposed transitions for the status are represented
below. It can be adapted if needed.

ID, status, dates, serial
number

Biometric Data Digital representation of biometric characteristics.
All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait, iris or signature.
A biometric data can be associated to no image or a
partial image if it includes information about the miss-
ing items (example: one finger may be amputated on
a 4 finger image)

fingerprint, portrait, iris,
signature

Biographic Data a dictionary (list of names and values) giving the bio-
graphic data of interest for the biometric services.

first name, last name,
date of birth, etc.

Request Data a dictionary (list of names and values) for data related
to the request itself.

Type of credential, action
to execute, priority

5.7. Credential Services 61

OSIA, Release 5.0.0

Fig. 5.12: Credential Data Model

5.8 ID Usage

ID Usage consists of a set of services implemented on top of identity systems to favour third parties consumption
of identity data. The services can be classified in three sets:

• Relying Party API: submitting citizen ID attributes for validation

The purpose of the Relying Party (RP) API is to extend the use of government-issued identity to registered
third party services. The individual will submit their ID attributes to the relying party in order to enroll for,
or access, a particular service. The relying party will leverage the RP API to access the identity management
system and verify the individual’s identity. In this way, external relying parties can quickly and easily verify
individuals based on their government issued ID attributes.

Use case applications: telco enrolment

The RP API enables a telco operator to check an individual’s identity when applying for a service contract.
The telco relies on the government to confirm that the attributes submitted by the individual match against
the data held in the database therefore being able to confidently identify the new subscriber. This scenario
can be replicated across multiple sectors including banking and finance.

• Digital Credential Management API: delegating digital issuance to third parties

The purpose of the Digital Credential Management (DCM) API is to enable external wallet providers to
manage government issued digital credentials distribution, storage and usage.

Use case applications: digital driver license

The DCM API enables individuals to request a digital driver license as a digital credential in their selected
wallet to use for online and offline identification. The user initiates a request for digital driver license
using the Digital Credential Distribution System (DCDS) frontend, which sends the request to the identity
management system. The Credential Management System (CMS) then issues the digital credential by
dedicated API endpoint of the DCDS.

• Federation API: user-initiated attributes sharing

5.8. ID Usage 62

OSIA, Release 5.0.0

The purpose of the federation API is to enable the user to share their attributes with a chosen relying party
using well-known internet protocol: OpenID Connect. The relying party benefits from the government’s
verified attributes.

Use case applications: on-line registration to gambling website

The Federation API enables individuals to log-in with their government credential (log-in/password) and
share verified attributes ex. age (above 18) with the relying party.

5.8.1 Relying Party API

verifyIdentity(Identifier, attributeSet)
Verify an Identity based on an identifier (UIN, token. . .) and a set of Identity Attributes. Verification is
strictly matching all provided identity attributes to compute the global Boolean matching result.

Authorization: id.verify

Parameters

• Identifier (str) – The person’s Identifier

• attributeSet (list[str]) – A set of identity attributes associated to the identi-
fier and to be verified by the system

Returns Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

identify(attributeSet, outputAttributeSet)
Identify possibly matching identities against an input set of attributes. Returns an array of predefined
datasets as described by outputAttributeSet.

Note: This service may be limited to some specific government RPs

Authorization: id.identify

Parameters

• attributeSet (list[str]) – A list of pair (name,value) requested

• outputAttributeSet (list[str]) – An array of attributes requested

Returns Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

readAttributes(Identifier, outputAttributeSet)
Get a list of identity attributes attached to a given identifier.

Authorization: id.read

Parameters

• Identifier (str) – The person’s Identifier

• outputAttributeSet (list[str]) – defining the identity attributes to be pro-
vided back to the caller

Returns An array of the requested attributes

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

readAttributeSet(Identifier, AttributeSetName)
Get a set of identity attributes as defined by attributeSet, attached to a given identifier.

Authorization: id.set.read

Parameters

5.8. ID Usage 63

OSIA, Release 5.0.0

• Identifier (str) – The person’s Identifier

• attributeSetName (str) – The name of predefined attributes set name

Returns An array of the requested attributes

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

5.8.2 Attribute set

When identity attributes are exchanged, they are included in an attribute set, possibly containing groups like bio-
graphic data, biometric data, document data, contact data. . . This structure is extensible and may be complemented
with other data groups, and each group may contain any number of attribute name / attribute value pairs.

5.8.3 Attribute set name

Attribute sets are by definition structures with variable and optional content, hence it may be useful to pre-agree
on a given attribute set content and name between two or more systems in a given project scope.

Any string may be used to define an attribute set name, but in the scope of this specification following names are
reserved and predefined:

“DEFAULT_SET_01” Minimum demographic data

First name
Last name
DoB
Place of birth

“DEFAULT_SET_02” Minimum demographic and por-
trait

Minimum demographic data +
portrait

“DEFAULT_SET_EIDAS” Set expected to comply with eI-
DAS pivotal attributes.

TBD

5.8.4 Output Attribute set

To specify what identity attributes are expected in return when performing e.g. an identify request or a read
attributes.

5.8. ID Usage 64

CHAPTER 6

Components

This chapter describes for each component the interfaces that it MAY implement.

6.1 Enrollment Component

The enrollment component MAY implement the following interfaces:

6.1.1 Enrollment Services

This interface describes enrollment services in the context of an identity system. It is based on the following
principles:

• When enrollment is done in one step, the CreateEnrollment can contain all the data and an additional flag
(finalize) to indicate all data was collected.

• During the process, enrollment structure can be updated. Only the data that changed need to be transferred.
Data not included is left unchanged on the server. In the following example, the biographic data is not
changed.

• Images can be passed by value or reference. When passed by value, they are base64-encoded.

• Existing standards are used whenever possible, for instance preferred image format for biometric data is
ISO-19794.

About documents

Adding one document or deleting one document implies that:

• The full document list is read (ReadEnrollment)

• The document list is altered locally to the enrollment client (add or delete)

• The full document list is sent back using the UpdateEnrollment service

65

OSIA, Release 5.0.0

Services

createEnrollment(enrollmentID, enrollmentTypeId, enrollmentFlags, requestData, contextualData,
biometricData, biographicData, documentData, finalize, transactionID)

Insert a new enrollment.

Authorization: enroll.write

Parameters

• enrollmentID (str) – The ID of the enrollment. If the enrollment already exists
for the ID an error is returned.

• enrollmentTypeId (str) – The enrollment type ID of the enrollment.

• enrollmentFlags (dict) – The enrollment custom flags.

• requestData (dict) – The enrollment data related to the enrollment itself.

• contextualData (dict) – Information about the context of the enrollment

• biometricData (list) – The enrollment biometric data.

• biographicData (dict) – The enrollment biographic data.

• documentData (list) – The enrollment biometric data.

• finalize (str) – Flag to indicate that data was collected.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

readEnrollment(enrollmentID, attributes, transactionID)
Retrieve the attributes of an enrollment.

Authorization: enroll.read

Parameters

• enrollmentID (str) – The ID of the enrollment.

• attributes (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error and in case of success the enrollment data.

updateEnrollment(enrollmentID, enrollmentTypeId, enrollmentFlags, requestData, contextualData,
biometricData, biographicData, documentData, finalize, transactionID)

Update an enrollment.

Authorization: enroll.write

Parameters

• enrollmentID (str) – The ID of the enrollment. If the enrollment already exists
for the ID an error is returned.

• enrollmentTypeId (str) – The enrollment type ID of the enrollment.

• enrollmentFlags (dict) – The enrollment custom flags.

• requestData (dict) – The enrollment data related to the enrollment itself.

• contextualData (dict) – Information about the context of the enrollment

• biometricData (list) – The enrollment biometric data, this can be partial data.

• biographicData (dict) – The enrollment biographic data.

• documentData (list) – The enrollment biometric data, this can be partial data.

• finalize (str) – Flag to indicate that data was collected.

6.1. Enrollment Component 66

OSIA, Release 5.0.0

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

partialupdateEnrollment(enrollmentID, enrollmentTypeId, enrollmentFlags, requestData, con-
textualData, biometricData, biographicData, documentData, finalize,
transactionID)

Update part of an enrollment. Not all attributes are mandatory. The payload is defined as per RFC 7396.

Authorization: enroll.write

Parameters

• enrollmentID (str) – The ID of the enrollment. If the enrollment already exists
for the ID an error is returned.

• enrollmentTypeId (str) – The enrollment type ID of the enrollment.

• enrollmentFlags (dict) – The enrollment custom flags.

• requestData (dict) – The enrollment data related to the enrollment itself.

• contextualData (dict) – Information about the context of the enrollment

• biometricData (list) – The enrollment biometric data, this can be partial data.

• biographicData (dict) – The enrollment biographic data.

• documentData (list) – The enrollment biometric data, this can be partial data.

• finalize (str) – Flag to indicate that data was collected.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

finalizeEnrollment(enrollmentID, transactionID)
When all the enrollment steps are done, the enrollment client indicates to the enrollment server that all data
has been collected and that any further processing can be triggered.

Authorization: enroll.write

Parameters

• enrollmentID (str) – The ID of the enrollment.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

deleteEnrollment(enrollmentID, transactionID)
Deletes the enrollment

Authorization: enroll.write

Parameters

• enrollmentID (str) – The ID of the enrollment.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

findEnrollments(expressions, offset, limit, transactionID)
Retrieve a list of enrollments which match passed in search criteria.

Authorization: enroll.read

Parameters

• expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=)
and the attribute value

6.1. Enrollment Component 67

https://tools.ietf.org/html/rfc7396.html

OSIA, Release 5.0.0

• offset (int) – The offset of the query (first item of the response) (optional, default
to 0)

• limit (int) – The maximum number of items to return (optional, default to 100)

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error and in case of success the matching enrollment list.

createBuffer(enrollmentId, data, digest)
This service is used to send separately the buffers of the images. Buffers can be sent any time from the
enrollment client prior to the create or update.

Authorization: enroll.buf.write

Parameters

• enrollmentID (str) – The ID of the enrollment.

• data (image) – The buffer data.

• transactionID (string) – The client generated transactionID.

• digest (string) – The digest (hash) of the buffer used by the server to check the
integrity of the data received.

Returns a status indicating success or error and in case of success the buffer ID.

readBuffer(enrollmentId, bufferId)
This service is used to get the data of a buffer.

Authorization: enroll.buf.read

Parameters

• enrollmentID (str) – The ID of the enrollment.

• bufferID (str) – The ID of the buffer.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error and in case of success the data of the buffer and a
digest.

Attributes

The “attributes” parameter used in “read” calls is used to provide a set of identifiers that limit the amount of data
that is returned. It is often the case that the whole data set is not required, but instead, a subset of that data. Where
possible, existing standards based identifiers should be used for the attributes to retrieve.

E.g. For surname/familyname, use OID 2.5.4.4 or id-at-surname.

Some calls may require new attributes to be defined. E.g. when retrieving biometric data, the caller may only want
the meta data about that biometric, rather than the actual biometric data.

Transaction ID

The transactionID is a string provided by the client application to identity the request being submitted. It
can be used for tracing and debugging.

6.1. Enrollment Component 68

OSIA, Release 5.0.0

Data Model

Table 6.1: Enrolment Data Model
Type Description Example
Enrollment Set of person data which are captured. TBD
Document Data The document data of the enrollment. TBD
Biometric Data Digital representation of biometric characteristics.

All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait, iris or signature.
A biometric data can be associated to no image or a
partial image if it includes information about the miss-
ing items (example: one finger may be amputated on
a 4 finger image)

fingerprint, portrait, iris,
signature

Biographic Data a dictionary (list of names and values) giving the bio-
graphic data of interest for the biometric services.

TBD

Enrollment Flags a dictionary (list of names and values) for custom
flags.

TBD

Request Data a dictionary (list of names and values) for data related
to the enrollment itself (the operator, the station, the
data, etc.).

TBD

Contextual Data A dictionary (list of names and values) attached to the
context of establishing the identity

operatorName,
enrollmentDate,
etc.

Attributes a dictionary (list of names and values or range of
values) describing the attributes to return. Attributes
can apply on biographic data, document data, request
data, or enrollment flag data.

TBD

Expressions Each expression is described with the attribute’s
name, the operator (one of <, >, =, >=, <=, !=) and
the attribute value

TBD

6.1. Enrollment Component 69

OSIA, Release 5.0.0

Fig. 6.1: Enrollment Data Model

6.2 Population Registry

The population registry component MAY implement the following interfaces:

6.2.1 Notification

See Notification for the technical details of this interface.

The subscription & notification process is managed by a middleware and is described in the following diagram:

6.2. Population Registry 70

OSIA, Release 5.0.0

Fig. 6.2: Subscription & Notification Process

Services

For the Subscriber

subscribe(topic, URL)
Subscribe a URL to receive notifications sent to one topic

Authorization: notif.sub.write

Parameters

• topic (str) – Topic

• URL (str) – URL to be called when a notification is available

Returns a subscription ID

This service is synchronous.

listSubscriptions()
Get all subscriptions

Authorization: notif.sub.read

Parameters URL (str) – URL to be called when a notification is available

Returns a subscription ID

This service is synchronous.

6.2. Population Registry 71

OSIA, Release 5.0.0

unsubscribe(id)
Unsubscribe a URL from the list of receiver for one topic

Authorization: notif.sub.write

Parameters id (str) – Subscription ID

Returns bool

This service is synchronous.

confirm(token)
Used to confirm that the URL used during the subscription is valid

Authorization: notif.sub.write

Parameters token (str) – A token send through the URL.

Returns bool

This service is synchronous.

For the Publisher

createTopic(topic)
Create a new topic. This is required before an event can be sent to it.

Authorization: notif.topic.write

Parameters topic (str) – Topic

Returns N/A

This service is synchronous.

listTopics()
Get the list of all existing topics.

Authorization: notif.topic.read

Returns N/A

This service is synchronous.

deleteTopic(topic)
Delete a topic.

Authorization: notif.topic.write

Parameters topic (str) – Topic

Returns N/A

This service is synchronous.

publish(topic, subject, message)
Notify of a new event all systems that subscribed to this topic

Authorization: notif.topic.publish

Parameters

• topic (str) – Topic

• subject (str) – The subject of the message

• message (str) – The message itself (a string buffer)

Returns N/A

This service is asynchronous (systems that subscribed on this topic are notified asynchronously).

6.2. Population Registry 72

OSIA, Release 5.0.0

Dictionaries

As an example, below there is a list of events that each component might handle.

Table 6.2: Event Type
Event Type Emitted by CR Emitted by PR
Live birth XXX
Death XXX
Fœtal Death XXX
Marriage XXX
Divorce XXX
Annulment XXX
Separation, judicial XXX
Adoption XXX
Legitimation XXX
Recognition XXX
Change of name XXX
Change of gender XXX
New person XXX
Duplicate person XXX XXX

6.2.2 Data Access

See Data Access for the technical details of this interface.

Services

readPersonAttributes(UIN, names)
Read person attributes.

Authorization: pr.person.read or cr.person.read

Parameters

• UIN (str) – The person’s UIN

• names (list[str]) – The names of the attributes requested

Returns a list of pair (name,value). In case of error (unknown attributes, unauthorized access,
etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

Fig. 6.3: readPersonAttributes Sequence Diagram

6.2. Population Registry 73

OSIA, Release 5.0.0

matchPersonAttributes(UIN, attributes)
Match person attributes. This service is used to check the value of attributes without exposing private data.
The implementation can use a simple comparison or a more advanced technique (for example: phonetic
comparison for names)

Authorization: pr.person.match or cr.person.match

Parameters

• UIN (str) – The person’s UIN

• attributes (list[(str,str)]) – The attributes to match. Each attribute is
described with its name and the expected value

Returns If all attributes match, a Yes is returned. If one attribute does not match, a No is returned
along with a list of (name,reason) for each non-matching attribute.

This service is synchronous. It can be used to match attributes in CR or in PR.

Fig. 6.4: matchPersonAttributes Sequence Diagram

verifyPersonAttributes(UIN, expressions)
Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s at-
tributes without exposing private data The implementation can use a simple comparison or a more advanced
technique (for example: phonetic comparison for names)

Authorization: pr.person.verify or cr.person.verify

Parameters

• UIN (str) – The person’s UIN

• expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=)
and the attribute value

Returns A Yes if all expressions are true, a No if one expression is false, a Unknown if
To be defined

This service is synchronous. It can be used to verify attributes in CR or in PR.

6.2. Population Registry 74

OSIA, Release 5.0.0

Fig. 6.5: verifyPersonAttributes Sequence Diagram

queryPersonUIN(attributes, offset, limit)
Query the persons by a set of attributes. This service is used when the UIN is unknown. The implementation
can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: pr.person.read or cr.person.read

Parameters

• attributes (list[(str,str)]) – The attributes to be used to find UIN. Each
attribute is described with its name and its value

• offset (int) – The offset of the query (first item of the response) (optional, default
to 0)

• limit (int) – The maximum number of items to return (optional, default to 100)

Returns a list of matching UIN

This service is synchronous. It can be used to get the UIN of a person.

Fig. 6.6: queryPersonUIN Sequence Diagram

queryPersonList(attributes, names, offset, limit)
Query the persons by a list of attributes and their values. This service is proposed as an optimization of a
sequence of calls to queryPersonUIN() and readPersonAttributes().

Authorization: pr.person.read or cr.person.read

Parameters

• attributes (list[(str,str)]) – The attributes to be used to find the persons.
Each attribute is described with its name and its value

6.2. Population Registry 75

OSIA, Release 5.0.0

• names (list[str]) – The names of the attributes requested

• offset (int) – The offset of the query (first item of the response) (optional, default
to 0)

• limit (int) – The maximum number of items to return (optional, default to 100)

Returns a list of lists of pairs (name,value). In case of error (unknown attributes, unauthorized
access, etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

Fig. 6.7: queryPersonList Sequence Diagram

readDocument(UINs, documentType, format)
Read in a selected format (PDF, image, . . .) a document such as a marriage certificate.

Authorization: pr.document.read or cr.document.read

Parameters

• UIN (list[str]) – The list of UINs for the persons concerned by the document

• documentType (str) – The type of document (birth certificate, etc.)

• format (str) – The format of the returned/requested document

Returns The list of the requested documents

This service is synchronous. It can be used to get the documents for a person.

Fig. 6.8: readDocument Sequence Diagram

Dictionaries

As an example, below there is a list of attributes/documents that each component might handle.

6.2. Population Registry 76

OSIA, Release 5.0.0

Table 6.3: Person Attributes
Attribute Name In CR In PR Description
UIN XXX XXX
first name XXX XXX
last name XXX XXX
spouse name XXX XXX
date of birth XXX XXX
place of birth XXX XXX
gender XXX XXX
date of death XXX XXX
place of death XXX
reason of death XXX
status XXX Example: missing, wanted, dead, etc.

Table 6.4: Certificate Attributes
Attribute Name In CR In PR Description
officer name XXX
number XXX
date XXX
place XXX
type XXX

Table 6.5: Union Attributes
Attribute Name In CR In PR Description
date of union XXX
place of union XXX
conjoint1 UIN XXX
conjoint2 UIN XXX
date of divorce XXX

Table 6.6: Filiation Attributes
Attribute Name In CR In PR Description
parent1 UIN XXX
parent2 UIN XXX

Table 6.7: Document Type
Document Type Description
birth certificate To be completed

death certificate To be completed

marriage certificate To be completed

6.2.3 Population Registry Services

This interface describes services to manage a registry of the population in the context of an identity system. It is
based on the following principles:

• It supports a history of identities, meaning that a person has one identity and this identity has a history.

• Images can be passed by value or reference. When passed by value, they are base64-encoded.

• Existing standards are used whenever possible.

6.2. Population Registry 77

OSIA, Release 5.0.0

• This interface is complementary to the data access interface. The data access interface is used to query the
persons and uses the reference identity to return attributes.

• The population registry can store the biometric data or can rely on the ABIS subsystem to do it. The
preferred solution, for a clean separation of data of different nature and by application of GDPR principles,
is to put the biometric data only in the ABIS. Yet many existing systems store biometric data with the
biographic data and this specification gives the flexibility to do it.

See Population Registry Management for the technical details of this interface.

Services

findPersons(expressions, group, reference, gallery, offset, limit, transactionID)
Retrieve a list of persons which match passed in search criteria.

Authorization: pr.person.read

Parameters

• expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=)
and the attribute value

• group (bool) – Group the results per person and return only personID

• reference (bool) – Limit the query to the reference identities

• gallery (string) – A gallery ID used to limit the search

• offset (int) – The offset of the query (first item of the response) (optional, default
to 0)

• limit (int) – The maximum number of items to return (optional, default to 100)

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error and in case of success the matching person list.

createPerson(personID, personData, transactionID)
Create a new person.

Authorization: pr.person.write

Parameters

• personID (str) – The ID of the person. If the person already exists for the ID an
error is returned.

• personData – The person attributes.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readPerson(personID, transactionID)
Read the attributes of a person.

Authorization: pr.person.read

Parameters

• personID (str) – The ID of the person.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error and in case of success the person data.

6.2. Population Registry 78

OSIA, Release 5.0.0

updatePerson(personID, personData, transactionID)
Update a person.

Authorization: pr.person.write

Parameters

• personID (str) – The ID of the person.

• personData (dict) – The person data.

Returns a status indicating success or error.

deletePerson(personID, transactionID)
Delete a person and all its identities.

Authorization: pr.person.write

Parameters

• personID (str) – The ID of the person.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

mergePerson(personID1, personID2, transactionID)
Merge two person records into a single one. Identity ID are preserved and in case of duplicates an error is
returned and no changes are done. The reference identity is not changed.

Authorization: pr.person.write

Parameters

• personID1 (str) – The ID of the person that will receive new identities

• personID2 (str) – The ID of the person that will give its identities. It will be deleted
if the move of all identities is successful.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

createIdentity(personID, identityID, identity, transactionID)
Create a new identity in a person. If no identityID is provided, a new one is generated. If identityID
is provided, it is checked for uniqueness and used for the identity if unique. An error is returned if the
provided identityID is not unique.

Authorization: pr.identity.write

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity.

• identity – The new identity data.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readIdentity(personID, identityID, transactionID)
Read one or all the identities of one person.

Authorization: pr.identity.read

Parameters

6.2. Population Registry 79

OSIA, Release 5.0.0

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity. If not provided, all identities are re-
turned.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error, and in case of success a list of identities.

updateIdentity(personID, identityID, identity, transactionID)
Update an identity. An identity can be updated only in the status claimed.

Authorization: pr.identity.write

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity.

• identity – The identity data.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

partialUpdateIdentity(personID, identityID, identity, transactionID)
Update part of an identity. Not all attributes are mandatory. The payload is defined as per RFC 7396. An
identity can be updated only in the status claimed.

Authorization: pr.identity.write

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity.

• identity – Part of the identity data.

Returns a status indicating success or error.

deleteIdentity(personID, identityID, transactionID)
Delete an identity.

Authorization: pr.identity.write

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

setIdentityStatus(personID, identityID, status, transactionID)
Set an identity status.

Authorization: pr.identity.write

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity.

• status (str) – The new status of the identity.

6.2. Population Registry 80

https://tools.ietf.org/html/rfc7396.html

OSIA, Release 5.0.0

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

defineReference(personID, identityID, transactionID)
Define the reference identity of one person.

Authorization: pr.reference.write

Parameters

• personID (str) – The ID of the person.

• identityID (str) – The ID of the identity being now the reference.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readReference(personID, transactionID)
Read the reference identity of one person.

Authorization: pr.reference.read

Parameters

• personID (str) – The ID of the person.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error and in case of success the reference identity.

readGalleries(transactionID)
Read the ID of all the galleries.

Authorization: pr.gallery.read

Parameters transactionID (str) – A free text used to track the system activities related
to the same transaction.

Returns a status indicating success or error, and in case of success a list of gallery ID.

readGalleryContent(galleryID, transactionID, offset, limit)
Read the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: pr.gallery.read

Parameters

• galleryID (str) – Gallery whose content will be returned.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• offset (int) – The offset of the query (first item of the response) (optional, default
to 0)

• limit (int) – The maximum number of items to return (optional, default to 1000)

Returns a status indicating success or error. In case of success a list of person/identity IDs.

6.2. Population Registry 81

OSIA, Release 5.0.0

6.2. Population Registry 82

OSIA, Release 5.0.0

Data Model

Table 6.8: Population Registry Data Model
Type Description Example
Gallery A group of persons related by a common purpose,

designation, or status. A person can belong to mul-
tiple galleries.

VIP, Wanted, etc.

Person Person who is known to an identity assurance system.
A person record has:

• a status, such as active or inactive, defin-
ing the status of the record (the record can be
excluded from queries based on this status),

• a physical status, such as alive or dead,
defining the status of the person,

• a set of identities, keeping track of all identity
data submitted by the person during the life of
the system,

• a reference identity, i.e. a consolidated view
of all the identities defining the current correct
identity of the person. It corresponds usually to
the last valid identity but it can also include data
from previous identities.

N/A

Identity The attributes describing an identity of a person.
An identity has a status such as: claimed (iden-
tity not yet validated), valid (the identity is valid),
invalid (the identity is confirmed as not valid),
revoked (the identity cannot be used any longer).
An identity can be updated only in the status
claimed.
The proposed transitions for the status are represented
below. It can be adapted if needed.

The attributes are separated into two categories: the
biographic data and the contextual data.

N/A

Biographic Data A dictionary (list of names and values) giving the bi-
ographic data of the identity

firstName,
lastName,
dateOfBirth, etc.

Contextual Data A dictionary (list of names and values) attached to the
context of establishing the identity

operatorName,
enrollmentDate,
etc.

Biometric Data Digital representation of biometric characteristics.
All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait, iris or signature.
A biometric data can be associated to no image or a
partial image if it includes information about the miss-
ing items (example: one finger may be amputated on
a 4 finger image)

fingerprint, portrait, iris,
signature

Document The document data (images) attached to the identity
and used to validate it.

Birth certificate, invoice

6.2. Population Registry 83

OSIA, Release 5.0.0

Fig. 6.9: Population Registry Data Model

6.3 Civil Registry

The civil registry component MAY implement the following interfaces:

6.3.1 Notification

See Notification for the technical details of this interface.

The subscription & notification process is managed by a middleware and is described in the following diagram:

6.3. Civil Registry 84

OSIA, Release 5.0.0

Fig. 6.10: Subscription & Notification Process

Services

For the Subscriber

subscribe(topic, URL)
Subscribe a URL to receive notifications sent to one topic

Authorization: notif.sub.write

Parameters

• topic (str) – Topic

• URL (str) – URL to be called when a notification is available

Returns a subscription ID

This service is synchronous.

listSubscriptions()
Get all subscriptions

Authorization: notif.sub.read

Parameters URL (str) – URL to be called when a notification is available

Returns a subscription ID

This service is synchronous.

6.3. Civil Registry 85

OSIA, Release 5.0.0

unsubscribe(id)
Unsubscribe a URL from the list of receiver for one topic

Authorization: notif.sub.write

Parameters id (str) – Subscription ID

Returns bool

This service is synchronous.

confirm(token)
Used to confirm that the URL used during the subscription is valid

Authorization: notif.sub.write

Parameters token (str) – A token send through the URL.

Returns bool

This service is synchronous.

For the Publisher

createTopic(topic)
Create a new topic. This is required before an event can be sent to it.

Authorization: notif.topic.write

Parameters topic (str) – Topic

Returns N/A

This service is synchronous.

listTopics()
Get the list of all existing topics.

Authorization: notif.topic.read

Returns N/A

This service is synchronous.

deleteTopic(topic)
Delete a topic.

Authorization: notif.topic.write

Parameters topic (str) – Topic

Returns N/A

This service is synchronous.

publish(topic, subject, message)
Notify of a new event all systems that subscribed to this topic

Authorization: notif.topic.publish

Parameters

• topic (str) – Topic

• subject (str) – The subject of the message

• message (str) – The message itself (a string buffer)

Returns N/A

This service is asynchronous (systems that subscribed on this topic are notified asynchronously).

6.3. Civil Registry 86

OSIA, Release 5.0.0

Dictionaries

As an example, below there is a list of events that each component might handle.

Table 6.9: Event Type
Event Type Emitted by CR Emitted by PR
Live birth XXX
Death XXX
Fœtal Death XXX
Marriage XXX
Divorce XXX
Annulment XXX
Separation, judicial XXX
Adoption XXX
Legitimation XXX
Recognition XXX
Change of name XXX
Change of gender XXX
New person XXX
Duplicate person XXX XXX

6.3.2 Data Access

See Data Access for the technical details of this interface.

Services

readPersonAttributes(UIN, names)
Read person attributes.

Authorization: pr.person.read or cr.person.read

Parameters

• UIN (str) – The person’s UIN

• names (list[str]) – The names of the attributes requested

Returns a list of pair (name,value). In case of error (unknown attributes, unauthorized access,
etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

Fig. 6.11: readPersonAttributes Sequence Diagram

6.3. Civil Registry 87

OSIA, Release 5.0.0

matchPersonAttributes(UIN, attributes)
Match person attributes. This service is used to check the value of attributes without exposing private data.
The implementation can use a simple comparison or a more advanced technique (for example: phonetic
comparison for names)

Authorization: pr.person.match or cr.person.match

Parameters

• UIN (str) – The person’s UIN

• attributes (list[(str,str)]) – The attributes to match. Each attribute is
described with its name and the expected value

Returns If all attributes match, a Yes is returned. If one attribute does not match, a No is returned
along with a list of (name,reason) for each non-matching attribute.

This service is synchronous. It can be used to match attributes in CR or in PR.

Fig. 6.12: matchPersonAttributes Sequence Diagram

verifyPersonAttributes(UIN, expressions)
Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s at-
tributes without exposing private data The implementation can use a simple comparison or a more advanced
technique (for example: phonetic comparison for names)

Authorization: pr.person.verify or cr.person.verify

Parameters

• UIN (str) – The person’s UIN

• expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=)
and the attribute value

Returns A Yes if all expressions are true, a No if one expression is false, a Unknown if
To be defined

This service is synchronous. It can be used to verify attributes in CR or in PR.

6.3. Civil Registry 88

OSIA, Release 5.0.0

Fig. 6.13: verifyPersonAttributes Sequence Diagram

queryPersonUIN(attributes, offset, limit)
Query the persons by a set of attributes. This service is used when the UIN is unknown. The implementation
can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: pr.person.read or cr.person.read

Parameters

• attributes (list[(str,str)]) – The attributes to be used to find UIN. Each
attribute is described with its name and its value

• offset (int) – The offset of the query (first item of the response) (optional, default
to 0)

• limit (int) – The maximum number of items to return (optional, default to 100)

Returns a list of matching UIN

This service is synchronous. It can be used to get the UIN of a person.

Fig. 6.14: queryPersonUIN Sequence Diagram

queryPersonList(attributes, names, offset, limit)
Query the persons by a list of attributes and their values. This service is proposed as an optimization of a
sequence of calls to queryPersonUIN() and readPersonAttributes().

Authorization: pr.person.read or cr.person.read

Parameters

• attributes (list[(str,str)]) – The attributes to be used to find the persons.
Each attribute is described with its name and its value

6.3. Civil Registry 89

OSIA, Release 5.0.0

• names (list[str]) – The names of the attributes requested

• offset (int) – The offset of the query (first item of the response) (optional, default
to 0)

• limit (int) – The maximum number of items to return (optional, default to 100)

Returns a list of lists of pairs (name,value). In case of error (unknown attributes, unauthorized
access, etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

Fig. 6.15: queryPersonList Sequence Diagram

readDocument(UINs, documentType, format)
Read in a selected format (PDF, image, . . .) a document such as a marriage certificate.

Authorization: pr.document.read or cr.document.read

Parameters

• UIN (list[str]) – The list of UINs for the persons concerned by the document

• documentType (str) – The type of document (birth certificate, etc.)

• format (str) – The format of the returned/requested document

Returns The list of the requested documents

This service is synchronous. It can be used to get the documents for a person.

Fig. 6.16: readDocument Sequence Diagram

Dictionaries

As an example, below there is a list of attributes/documents that each component might handle.

6.3. Civil Registry 90

OSIA, Release 5.0.0

Table 6.10: Person Attributes
Attribute Name In CR In PR Description
UIN XXX XXX
first name XXX XXX
last name XXX XXX
spouse name XXX XXX
date of birth XXX XXX
place of birth XXX XXX
gender XXX XXX
date of death XXX XXX
place of death XXX
reason of death XXX
status XXX Example: missing, wanted, dead, etc.

Table 6.11: Certificate Attributes
Attribute Name In CR In PR Description
officer name XXX
number XXX
date XXX
place XXX
type XXX

Table 6.12: Union Attributes
Attribute Name In CR In PR Description
date of union XXX
place of union XXX
conjoint1 UIN XXX
conjoint2 UIN XXX
date of divorce XXX

Table 6.13: Filiation Attributes
Attribute Name In CR In PR Description
parent1 UIN XXX
parent2 UIN XXX

Table 6.14: Document Type
Document Type Description
birth certificate To be completed

death certificate To be completed

marriage certificate To be completed

6.4 UIN Generator

The UIN generator component MAY implement the following interfaces:

6.4.1 UIN Management

See UIN Management for the technical details of this interface.

6.4. UIN Generator 91

OSIA, Release 5.0.0

Services

generateUIN(attributes, transactionID)
Generate a new UIN.

Authorization: uin.generate

Parameters

• attributes (list[(str,str)]) – A list of pair (attribute name, value) that can
be used to allocate a new UIN

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a new UIN or an error if the generation is not possible

This service is synchronous.

Fig. 6.17: generateUIN Sequence Diagram

6.5 ABIS

The ABIS component MAY implement the following interfaces:

6.5.1 Biometrics

This interface describes biometric services in the context of an identity system. It is based on the following
principles:

• It supports only multi-encounter model, meaning that an identity can have multiple set of biometric data,
one for each encounter.

• It does not expose templates (only images) for CRUD services, with one exception to support the use case
of credentials with biometrics.

• Images can be passed by value or reference. When passed by value, they are base64-encoded.

• Existing standards are used whenever possible, for instance preferred image format for biometric data is
ISO-19794.

About synchronous and asynchronous processing

Some services can be very slow depending on the algorithm used, the system workload, etc. Services are described
so that:

• If possible, the answer is provided synchronously in the response of the service.

6.5. ABIS 92

OSIA, Release 5.0.0

• If not possible for some reason, a status PENDING is returned and the answer, when available, is pushed to
a callback provided by the client.

If no callback is provided, this indicates that the client wants a synchronous answer, whatever the time it takes.

If a callback is provided, this indicates that the client wants an asynchronous answer, even if the result is immedi-
ately available.

See Biometrics for the technical details of this interface.

Services

createEncounter(personID, encounterID, galleryID, biographicData, contextualData, biometric-
Data, clientData, callback, transactionID, options)

Create a new encounter. No identify is performed.

Authorization: abis.encounter.write

Parameters

• personID (str) – The person ID. This is optional and will be generated if not pro-
vided

• encounterID (str) – The encounter ID. This is optional and will be generated if
not provided

• galleryID (list(str)) – the gallery ID to which this encounter belongs. A min-
imum of one gallery must be provided

• biographicData (dict) – The biographic data (ex: name, date of birth, gender,
etc.)

• contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

• biometricData (list) – the biometric data (images)

• clientData (bytes) – additional data not interpreted by the server but stored as is
and returned when encounter data is requested.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
algorithm.

Returns a status indicating success, error, or pending operation. In case of success, the person
ID and the encounter ID are returned. In case of pending operation, the result will be sent
later.

readEncounter(personID, encounterID, callback, transactionID, options)
Read the data of an encounter.

Authorization: abis.encounter.read

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the person are returned.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

6.5. ABIS 93

OSIA, Release 5.0.0

Returns a status indicating success, error, or pending operation. In case of success, the en-
counter data is returned. In case of pending operation, the result will be sent later.

updateEncounter(personID, encounterID, galleryID, biographicData, contextualData, biometric-
Data, callback, transactionID, options)

Update an encounter.

Authorization: abis.encounter.write

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID

• galleryID (list(str)) – the gallery ID to which this encounter belongs. A min-
imum of one gallery must be provided

• biographicData (dict) – The biographic data (ex: name, date of birth, gender,
etc.)

• contextualData (dict) – The contextual data (ex: encounter date, location, etc.)

• biometricData (list) – the biometric data (images)

• clientData (bytes) – additional data not interpreted by the server but stored as is
and returned when encounter data is requested.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
algorithm.

Returns a status indicating success, error, or pending operation. In case of success, the person
ID and the encounter ID are returned. In case of pending operation, the result will be sent
later.

deleteEncounter(personID, encounterID, callback, transactionID, options)
Delete an encounter.

Authorization: abis.encounter.write

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID. This is optional. If not provided, all the
encounters of the person are deleted.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of pending operation,
the operation status will be sent later.

mergeEncounter(personID1, personID2, callback, transactionID, options)
Merge two sets of encounters into a single set. Merging a set of N encounters with a set of M encounters
will result in a single set of N+M encounters. Encounter ID are preserved and in case of duplicates an error
is returned and no changes are done.

Authorization: abis.encounter.write

Parameters

• personID1 (str) – The ID of the person that will receive new encounters

6.5. ABIS 94

OSIA, Release 5.0.0

• personID2 (str) – The ID of the person that will give its encounters

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of pending operation,
the result will be sent later.

readTemplate(personID, encounterID, biometricType, biometricSubType, templateFormat, qualityFor-
mat, callback, transactionID, options)

Read the generated template.

Authorization: abis.encounter.read

Parameters

• personID (str) – The person ID

• encounterID (str) – The encounter ID.

• biometricType (str) – The type of biometrics to consider (optional)

• biometricSubType (str) – The subtype of biometrics to consider (optional)

• templateFormat (str) – the format of the template to return (optional)

• qualityFormat (str) – the format of the quality to return (optional)

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of success, a list of
template data is returned. In case of pending operation, the result will be sent later.

setEncounterStatus(personID, encounterID, status, transactionID)
Set an encounter status.

Authorization: abis.encounter.write

Parameters

• personID (str) – The ID of the person.

• encounterID (str) – The encounter ID.

• status (str) – The new status of the encounter.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readGalleries(callback, transactionID, options)
Read the ID of all the galleries.

Authorization: abis.gallery.read

Parameters

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

6.5. ABIS 95

OSIA, Release 5.0.0

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. A list of gallery ID is returned,
either synchronously or using the callback.

readGalleryContent(galleryID, callback, transactionID, offset, limit, options)
Read the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: abis.gallery.read

Parameters

• galleryID (str) – Gallery whose content will be returned.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• offset (int) – The offset of the query (first item of the response) (optional, default
to 0)

• limit (int) – The maximum number of items to return (optional, default to 1000)

• options (dict) – the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. A list of persons/encounters is
returned, either synchronously or using the callback.

identify(galleryID, filter, biometricData, callback, transactionID, options)
Identify a person using biometrics data and filters on biographic or contextual data. This may include
multiple operations, including manual operations.

Authorization: abis.identify

Parameters

• galleryID (str) – Search only in this gallery.

• filter (dict) – The input data (filters and biometric data)

• biometricData – the biometric data.

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A list of candidates is returned,
either synchronously or using the callback.

identify(galleryID, filter, personID, callback, transactionID, options)
Identify a person using biometrics data of a person existing in the system and filters on biographic or
contextual data. This may include multiple operations, including manual operations.

Authorization: abis.verify

Parameters

• galleryID (str) – Search only in this gallery.

• filter (dict) – The input data (filters and biometric data)

• personID – the person ID

• callback – The address of a service to be called when the result is available.

6.5. ABIS 96

OSIA, Release 5.0.0

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A list of candidates is returned,
either synchronously or using the callback.

verify(galleryID, personID, biometricData, callback, transactionID, options)
Verify an identity using biometrics data.

Authorization: To be defined

Parameters

• galleryID (str) – Search only in this gallery. If the person does not belong to this
gallery, an error is returned.

• personID (str) – The person ID

• biometricData – The biometric data

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A status (boolean) is returned,
either synchronously or using the callback. Optionally, details about the matching result can
be provided like the score per biometric and per encounter.

verify(biometricData1, biometricData2, callback, transactionID, options)
Verify that two sets of biometrics data correspond to the same person.

Authorization: To be defined

Parameters

• biometricData1 – The first set of biometric data

• biometricData2 – The second set of biometric data

• callback – The address of a service to be called when the result is available.

• transactionID (str) – A free text used to track the system activities related to the
same transaction.

• options (dict) – the processing options. Supported options are priority,
threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A status (boolean) is returned,
either synchronously or using the callback. Optionally, details about the matching result can
be provided like the score per the biometric.

6.5. ABIS 97

OSIA, Release 5.0.0

Options

Table 6.15: Biometric Services Options
Name Description
priority Priority of the request. Values range from 0 to 9. 0 indicates the lowest priority,

9 indicates the highest priority.
maxNbCand The maximum number of candidates to return.
threshold The threshold to apply on the score to filter the candidates during an identification,

authentication or verification.
algorithm Specify the type of algorithm to be used.
accuracyLevel Specify the accuracy expected of the request. This is to support different use cases,

when different behavior of the ABIS is expected (response time, accuracy, consol-
idation/fusion, etc.).

6.5. ABIS 98

OSIA, Release 5.0.0

Data Model

Table 6.16: Biometric Data Model
Type Description Example
Gallery A group of persons related by a common purpose,

designation, or status. A person can belong to mul-
tiple galleries.

TBD

Person Person who is known to an identity assurance system. TBD
Encounter Event in which the client application interacts with

a person resulting in data being collected during or
about the encounter. An encounter is characterized by
an identifier and a type (also called purpose in some
context).
An encounter has a status indicating if this encounter
is used in the biometric searches. Allowed values are
active or inactive.

TBD

Biographic Data a dictionary (list of names and values) giving the bio-
graphic data of interest for the biometric services.

TBD

Filters a dictionary (list of names and values or range of val-
ues) describing the filters during a search. Filters can
apply on biographic data, contextual data or encounter
type.

TBD

Biometric Data Digital representation of biometric characteristics.
All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait, iris or signature.
A biometric data can be associated to no image or a
partial image if it includes information about the miss-
ing items (example: one finger may be amputated on
a 4 finger image)

fingerprint, portrait, iris,
signature

Candidate Information about a candidate found during an identi-
fication

TBD

CandidateScore Detailed information about a candidate found during
an identification. It includes the score for the biomet-
rics used. It can also be extended with proprietary
information to better describe the matching result (for
instance: rotation needed to align the probe and the
candidate)

TBD

Template A computed buffer corresponding to a biometric and
allowing the comparison of biometrics. A template
has a format that can be a standard format or a vendor-
specific format.

N/A

6.5. ABIS 99

OSIA, Release 5.0.0

Fig. 6.18: Biometric Data Model

6.6 Credential Management System

The credential management system component MAY implement the following interfaces:

6.6.1 Credential Services

This interface describes services to manage credentials and credential requests in the context of an identity system.

Services

createCredentialRequest(personID, credentialProfileID, additionalData, transactionID)
Request issuance of a secure credential.

Authorization: cms.request.write

Parameters

• personID (str) – The ID of the person.

• credentialProfileID (str) – The ID of the credential profile to issue to the
person.

• additionalData (dict) – Additional data relating to the requested credential pro-
file, e.g. credential lifetime if overriding default, delivery addresses, etc.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error. In the case of success, a credential request identifier.

readCredentialRequest(credentialRequestID, attributes, transactionID)
Retrieve the data/status of a credential request.

6.6. Credential Management System 100

OSIA, Release 5.0.0

Authorization: cms.request.read

Parameters

• credentialRequestID (str) – The ID of the credential request.

• attributes (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error, and in case of success the issuance data/status.

updateCredentialRequest(credentialRequestID, additionalData, transactionID)
Update the requested issuance of a secure credential.

Authorization: cms.request.write

Parameters

• credentialRequestID (str) – The ID of the credential request.

• transactionID (string) – The client generated transactionID.

• additionalData (dict) – Additional data relating to the requested credential pro-
file, e.g. credential lifetime if overriding default, delivery addresses, etc.

Returns a status indicating success or error.

deleteCredentialRequest(credentialRequestID, transactionID)
Delete/cancel the requested issuance of a secure credential.

Authorization: cms.request.write

Parameters

• credentialRequestID (str) – The ID of the credential request.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

findCredentials(expressions, transactionID)
Retrieve a list of credentials that match the passed in search criteria.

Authorization: cms.credential.read

Parameters

• expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=)
and the attribute value.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error, in the case of success the list of matching creden-
tials.

readCredential(credentialID, attributes, transactionID)
Retrieve the attributes/status of an issued credential. A wide range of information may be returned, depen-
dant on the type of credential that was issued, smart card, mobile, passport, etc.

Authorization: cms.credential.read

Parameters

• credentialID (str) – The ID of the credential.

• attributes (set) – The (optional) set of required attributes to retrieve.

• transactionID (string) – The client generated transactionID.

6.6. Credential Management System 101

OSIA, Release 5.0.0

Returns a status indicating success or error, in the case of success the requested data will be
returned.

suspendCredential(credentialID, additionalData, transactionID)
Suspend an issued credential. For electronic credentials this will suspend any PKI certificates that are
present.

Authorization: cms.credential.write

Parameters

• credentialID (str) – The ID of the credential.

• additionalData (dict) – Additional data relating to the request, e.g. reason for
suspension.

• transactionID (string) – The (optional) client generated transactionID.

Returns a status indicating success or error.

unsuspendCredential(credentialID, additionalData, transactionID)
Unsuspend an issued credential. For electronic credentials this will unsuspend any PKI certificates that are
present.

Authorization: cms.credential.write

Parameters

• credentialID (str) – The ID of the credential.

• additionalData (dict) – Additional data relating to the request, e.g. reason for
unsuspension.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

revokeCredential(credentialID, additionalData, transactionID)
Revoke an issued credential. For electronic credentials this will revoke any PKI certificates that are present.

Authorization: cms.credential.write

Parameters

• credentialID (str) – The ID of the credential.

• additionalData (dict) – Additional data relating to the request, e.g. reason for
revocation.

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

setCredentialStatus(credentialID, status, reason, requester, comment, transactionID)
Change the status of a credential. This is an extension of the revoke/suspend services, supporting more
statuses and transitions.

Authorization: cms.credential.write

Parameters

• credentialID (str) – The ID of the credential.

• status (string) – The new status of the credential

• reason (string) – A text describing the cause of the change of status

• requester (string) – The client generated transactionID.

• comment (string) – A free text comment

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error.

6.6. Credential Management System 102

OSIA, Release 5.0.0

findCredentialProfiles(expressions, transactionID)
Retrieve a list of credential profils that match the passed in search criteria

Authorization: cms.profile.read

Parameters

• expressions (list[(str,str,str)]) – The expressions to evaluate. Each
expression is described with the attribute’s name, the operator (one of <, >, =, >=, <=,
!=) and the attribute value

• transactionID (string) – The client generated transactionID.

Returns a status indicating success or error, and in case of success the matching credential
profile list.

Attributes

The “attributes” parameter used in “read” calls is used to provide a set of identifiers that limit the amount of data
that is returned. It is often the case that the whole data set is not required, but instead, a subset of that data. @@
-128,7 +128,7 @@ attributes to retrieve.

E.g. For surname/familyname, use OID 2.5.4.4 or id-at-surname.

Some calls may require new attributes to be defined. E.g. when retrieving biometric data, the caller may only want
the meta data about that biometric, rather than the actual biometric data.

6.6. Credential Management System 103

OSIA, Release 5.0.0

Data Model

Table 6.17: Credential Data Model
Type Description Example
Credential The attributes of the credential itself

The proposed transitions for the status are represented
below. It can be adapted if needed.

ID, status, dates, serial
number

Biometric Data Digital representation of biometric characteristics.
All images can be passed by value (image buffer is
in the request) or by reference (the address of the im-
age is in the request). All images are compliant with
ISO 19794. ISO 19794 allows multiple encoding and
supports additional metadata specific to fingerprint,
palmprint, portrait, iris or signature.
A biometric data can be associated to no image or a
partial image if it includes information about the miss-
ing items (example: one finger may be amputated on
a 4 finger image)

fingerprint, portrait, iris,
signature

Biographic Data a dictionary (list of names and values) giving the bio-
graphic data of interest for the biometric services.

first name, last name,
date of birth, etc.

Request Data a dictionary (list of names and values) for data related
to the request itself.

Type of credential, action
to execute, priority

Fig. 6.19: Credential Data Model

6.6. Credential Management System 104

OSIA, Release 5.0.0

6.7 ID Usage

The ID usage component MAY implement the following interfaces:

6.7.1 ID Usage

ID Usage consists of a set of services implemented on top of identity systems to favour third parties consumption
of identity data. The services can be classified in three sets:

• Relying Party API: submitting citizen ID attributes for validation

The purpose of the Relying Party (RP) API is to extend the use of government-issued identity to registered
third party services. The individual will submit their ID attributes to the relying party in order to enroll for,
or access, a particular service. The relying party will leverage the RP API to access the identity management
system and verify the individual’s identity. In this way, external relying parties can quickly and easily verify
individuals based on their government issued ID attributes.

Use case applications: telco enrolment

The RP API enables a telco operator to check an individual’s identity when applying for a service contract.
The telco relies on the government to confirm that the attributes submitted by the individual match against
the data held in the database therefore being able to confidently identify the new subscriber. This scenario
can be replicated across multiple sectors including banking and finance.

• Digital Credential Management API: delegating digital issuance to third parties

The purpose of the Digital Credential Management (DCM) API is to enable external wallet providers to
manage government issued digital credentials distribution, storage and usage.

Use case applications: digital driver license

The DCM API enables individuals to request a digital driver license as a digital credential in their selected
wallet to use for online and offline identification. The user initiates a request for digital driver license
using the Digital Credential Distribution System (DCDS) frontend, which sends the request to the identity
management system. The Credential Management System (CMS) then issues the digital credential by
dedicated API endpoint of the DCDS.

• Federation API: user-initiated attributes sharing

The purpose of the federation API is to enable the user to share their attributes with a chosen relying party
using well-known internet protocol: OpenID Connect. The relying party benefits from the government’s
verified attributes.

Use case applications: on-line registration to gambling website

The Federation API enables individuals to log-in with their government credential (log-in/password) and
share verified attributes ex. age (above 18) with the relying party.

Relying Party API

verifyIdentity(Identifier, attributeSet)
Verify an Identity based on an identifier (UIN, token. . .) and a set of Identity Attributes. Verification is
strictly matching all provided identity attributes to compute the global Boolean matching result.

Authorization: id.verify

Parameters

6.7. ID Usage 105

OSIA, Release 5.0.0

• Identifier (str) – The person’s Identifier

• attributeSet (list[str]) – A set of identity attributes associated to the identi-
fier and to be verified by the system

Returns Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

identify(attributeSet, outputAttributeSet)
Identify possibly matching identities against an input set of attributes. Returns an array of predefined
datasets as described by outputAttributeSet.

Note: This service may be limited to some specific government RPs

Authorization: id.identify

Parameters

• attributeSet (list[str]) – A list of pair (name,value) requested

• outputAttributeSet (list[str]) – An array of attributes requested

Returns Y or N

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

readAttributes(Identifier, outputAttributeSet)
Get a list of identity attributes attached to a given identifier.

Authorization: id.read

Parameters

• Identifier (str) – The person’s Identifier

• outputAttributeSet (list[str]) – defining the identity attributes to be pro-
vided back to the caller

Returns An array of the requested attributes

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

readAttributeSet(Identifier, AttributeSetName)
Get a set of identity attributes as defined by attributeSet, attached to a given identifier.

Authorization: id.set.read

Parameters

• Identifier (str) – The person’s Identifier

• attributeSetName (str) – The name of predefined attributes set name

Returns An array of the requested attributes

In case of error (unknown attributes, unauthorized access, etc.) the value is replaced with an error

Attribute set

When identity attributes are exchanged, they are included in an attribute set, possibly containing groups like bio-
graphic data, biometric data, document data, contact data. . . This structure is extensible and may be complemented
with other data groups, and each group may contain any number of attribute name / attribute value pairs.

Attribute set name

Attribute sets are by definition structures with variable and optional content, hence it may be useful to pre-agree
on a given attribute set content and name between two or more systems in a given project scope.

6.7. ID Usage 106

OSIA, Release 5.0.0

Any string may be used to define an attribute set name, but in the scope of this specification following names are
reserved and predefined:

“DEFAULT_SET_01” Minimum demographic data

First name
Last name
DoB
Place of birth

“DEFAULT_SET_02” Minimum demographic and por-
trait

Minimum demographic data +
portrait

“DEFAULT_SET_EIDAS” Set expected to comply with eI-
DAS pivotal attributes.

TBD

Output Attribute set

To specify what identity attributes are expected in return when performing e.g. an identify request or a read
attributes.

6.7. ID Usage 107

CHAPTER 7

Annexes

7.1 Glossary

ABIS Automated Biometric Identification System

CR Civil Registry. The system in charge of the continuous, permanent, compulsory and universal recording of
the occurrence and characteristics of vital events pertaining to the population, as provided through decree
or regulation in accordance with the legal requirements in each country.

CMS Credential Management System

Credential A document, object, or data structure that vouches for the identity of a person through some method of
trust and authentication. Common types of identity credentials include - but are not limited to — ID cards,
certificates, numbers, passwords, or SIM cards. A biometric identifier can also be used as a credential once
it has been registered with the identity provider.

(Source: ID4D Practioner’s Guide)

Encounter Event in which the client application interacts with a person resulting in data being collected during
or about the encounter. An encounter is characterized by an identifier and a type (also called purpose in
some context).

(Source: ISO-30108-1)

Functional systems and registries Managing data including voter rolls, land registry, vehicle registration, pass-
port, residence registry, education, health and benefits.

Gallery Group of persons related by a common purpose, designation, or status. Example: a watch list or a set of
persons entitled to a certain benefit.

(Source: ISO-30108-1)

HTTP Status Codes The HTTP Status Codes are used to indicate the status of the executed operation. The
available status codes are described by RFC 7231 and in the IANA Status Code Registry.

Mime Types Mime type definitions are spread across several resources. The mime type definitions should be in
compliance with RFC 6838.

Some examples of possible mime type definitions:

108

http://documents.worldbank.org/curated/en/248371559325561562/pdf/ID4D-Practitioner-s-Guide.pdf
http://tools.ietf.org/html/rfc7231#section-6
http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
http://tools.ietf.org/html/rfc6838

OSIA, Release 5.0.0

text/plain; charset=utf-8
application/json
application/vnd.github+json
application/vnd.github.v3+json
application/vnd.github.v3.raw+json
application/vnd.github.v3.text+json
application/vnd.github.v3.html+json
application/vnd.github.v3.full+json
application/vnd.github.v3.diff
application/vnd.github.v3.patch

OSIA Open Standard Identity APIs

PR Population Registry. The system in charge of the recording of selected information pertaining to each member
of the resident population of a country.

UIN Unique Identity Number.

7.2 Data Format

TBD: Conventions about data format in the interface: json, standards for date, images; structure of biographic data

7.3 Technical Specifications

7.3.1 Notification

This is version 1.2.0 of this interface.

Get the OpenAPI file:

Notification Services

• create_topic
• list_topics
• delete_topic
• publish
• subscribe
• list_subscription
• unsubscribe
• confirm

Services

Subscriber

POST /v1/subscriptions
Subscribe to a topic

Subscribes a client to receive event notification.

Subscriptions are idempotent. Subscribing twice for the same topic and endpoint (protocol, address) will
return the same subscription ID and the subscriber will receive only once the notifications.

Scope required: notif.sub.write

Query Parameters

7.2. Data Format 109

(c) Secure Identity Alliance

openapi: 3.0.0
info:
 description: >
 The OSIA Notification Interface.

 Notifications are guaranteed to be delivered at least once. In some situation,
 it is possible they are delivered twice.

 Change log:

 - 1.2.0:
 - Add error structure on 400 errors
 - Force additionalProperties to false when extension is not allowed
 - 1.1.0:
 - Addition of security
 - Rename operation ID to be consistent with the other services
 - 1.0.0: Initial version

 version: 1.2.0
 title: OSIA Notification Interface
 license:
 name: SIA
 url: "https://raw.githubusercontent.com/SecureIdentityAlliance/osia/master/LICENSE"
tags:
 - name: Subscriber
 - name: Publisher
servers:
 - url: https://notification.com/
paths:
 /v1/subscriptions:
 post:
 summary: Subscribe to a topic
 description: |
 Subscribes a client to receive event notification.

 Subscriptions are idempotent. Subscribing twice for the same topic and
 endpoint (protocol, address) will return the same subscription ID and the
 subscriber will receive only once the notifications.
 security:
 - BearerAuth: [notif.sub.write]
 operationId: subscribe
 tags:
 - Subscriber
 parameters:
 - name: topic
 in: query
 required: true
 description: The name of the topic for which notifications will be sent
 schema:
 type: string
 - name: protocol
 in: query
 required: false
 description: The protocol used to send the notification
 schema:
 type: string
 enum: [http, email]
 - name: address
 in: query
 required: true
 description: the endpoint address, where the notifications will be sent.
 schema:
 type: string
 example: https://tonys-server.com
 - name: policy
 in: query
 required: false
 description: |
 The delivery policy, expressing what happens when the message cannot be delivered.

 If not specified, retry will be done every hour for 7 days.

 The value is a set of integer separated by comma:

 - countdown: the number of seconds to wait before retrying. Default: 3600.
 - max: the maximum max number of retry. -1 indicates infinite retry. Default: 168
 schema:
 type: string
 example: "3600,-1"
 responses:
 200:
 description: Subscription successfully created. Waiting for confirmation message.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Subscription'
 400:
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 callbacks:
 onEvent:
 # when event is sent, it will be sent to the `address` provided
 # when making the subscription
 '{$request.query.address}':
 post:
 operationId: notificationCB
 parameters:
 - name: message-type
 in: header
 required: true
 description: the type of the message
 schema:
 type: string
 enum: [SubscriptionConfirmation,Notification]
 - name: subscription-id
 in: header
 required: false
 description: the unique ID of the subscription
 schema:
 type: string
 - name: message-id
 in: header
 required: true
 description: the unique ID of the message
 schema:
 type: string
 - name: topic-id
 in: header
 required: true
 description: the unique ID of the topic
 schema:
 type: string
 requestBody:
 description: The message
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Message'
 responses:
 200:
 description: Message received and processed.
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 get:
 summary: Get all subscriptions
 operationId: listSubscription
 security:
 - BearerAuth: [notif.sub.read]
 tags:
 - Subscriber
 responses:
 200:
 description: Get all subscriptions
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Subscription'
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/subscriptions/{uuid}:
 delete:
 summary: Unsubscribe from a topic
 description: Unsubscribes a client from receiving notifications for a topic
 operationId: unsubscribe
 security:
 - BearerAuth: [notif.sub.write]
 tags:
 - Subscriber
 parameters:
 - name: uuid
 in: path
 required: true
 description: the unique ID returned when the subscription was done
 schema:
 type: string
 responses:
 204:
 description: Subscription successfully removed
 400:
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 404:
 description: Subscription not found
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/subscriptions/confirm:
 get:
 summary: Confirm the subscription
 description: |
 Confirm a subscription
 operationId: confirm
 security:
 - BearerAuth: [notif.sub.write]
 tags:
 - Subscriber
 parameters:
 - name: token
 in: query
 required: true
 description: the token sent to the endpoint
 schema:
 type: string
 responses:
 200:
 description: Subscription successfully confirmed
 400:
 description: Bad request (invalid token)
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/topics:
 post:
 summary: Create a topic
 description: Create a new topic. This service is idempotent.
 operationId: createTopic
 security:
 - BearerAuth: [notif.topic.write]
 tags:
 - Publisher
 parameters:
 - name: name
 in: query
 required: true
 description: The topic name
 schema:
 type: string
 responses:
 200:
 description: Topic was created.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Topic'
 400:
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 get:
 summary: Get all topics
 operationId: listTopics
 security:
 - BearerAuth: [notif.topic.read]
 tags:
 - Publisher
 responses:
 200:
 description: Get all topics
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Topic'
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/topics/{uuid}:
 delete:
 summary: Delete a topic
 description: Delete a topic
 operationId: deleteTopic
 security:
 - BearerAuth: [notif.topic.write]
 tags:
 - Publisher
 parameters:
 - name: uuid
 in: path
 required: true
 description: the unique ID returned when the topic was created
 schema:
 type: string
 responses:
 204:
 description: Topic successfully removed
 400:
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 404:
 description: Topic not found
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/topics/{uuid}/publish:
 post:
 summary: Post a notification to a topic.
 operationId: publish
 security:
 - BearerAuth: [notif.topic.publish]
 tags:
 - Publisher
 parameters:
 - name: uuid
 in: path
 required: true
 description: the unique ID of the topic
 schema:
 type: string
 - name: subject
 in: query
 required: false
 description: the subject of the message.
 schema:
 type: string
 requestBody:
 description: Message posted
 required: true
 content:
 plain/text:
 schema:
 type: string
 responses:
 200:
 description: Notification published
 400:
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

components:
 securitySchemes:
 BearerAuth:
 type: http
 scheme: bearer
 bearerFormat: JWT
 schemas:
 Error:
 type: object
 required:
 - code
 - message
 properties:
 code:
 type: integer
 format: int32
 message:
 type: string
 additionalProperties: false
 Message:
 type: object
 required:
 - type
 - message
 properties:
 type:
 type: string
 enum: [SubscriptionConfirmation, Notification]
 token:
 type: string
 description: Confirmation token, also available in subscribeURL
 topic:
 type: string
 message:
 type: string
 messageId:
 type: string
 subject:
 type: string
 subscribeURL:
 type: string
 format: uri
 description: URL to visit to confirm the subscription to a topic
 timestamp:
 type: string
 format: datetime
 additionalProperties: false
 Topic:
 type: object
 properties:
 uuid:
 type: string
 description: The unique ID of the topic
 name:
 type: string
 additionalProperties: false
 Subscription:
 type: object
 properties:
 uuid:
 type: string
 description: The unique ID of the subscription
 topic:
 type: string
 description: Topic unique ID
 protocol:
 type: string
 enum: [http, email]
 address:
 type: string
 policy:
 type: string
 active:
 type: boolean
 description: Status indicating if the subscription was confirmed or not.
 additionalProperties: false

Secure Identity Alliance

OSIA, Release 5.0.0

• topic (string) – The name of the topic for which notifications will be sent (Re-
quired)

• protocol (string) – The protocol used to send the notification

• address (string) – the endpoint address, where the notifications will be sent. (Re-
quired)

• policy (string) – The delivery policy, expressing what happens when the message
cannot be delivered.

If not specified, retry will be done every hour for 7 days.

The value is a set of integer separated by comma:

– countdown: the number of seconds to wait before retrying. Default: 3600.

– max: the maximum max number of retry. -1 indicates infinite retry. Default: 168

Status Codes

• 200 OK – Subscription successfully created. Waiting for confirmation message.

• 400 Bad Request – Bad request

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"uuid": "string",
"topic": "string",
"protocol": "http",
"address": "string",
"policy": "string",
"active": true

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: onEvent

POST {$request.query.address}

Status Codes

• 200 OK – Message received and processed.

• 500 Internal Server Error – Unexpected error

7.3. Technical Specifications 110

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

Request Headers

• message-type – the type of the message (Required)

• subscription-id – the unique ID of the subscription

• message-id – the unique ID of the message (Required)

• topic-id – the unique ID of the topic (Required)

Example request:

POST {$request.query.address} HTTP/1.1
Host: example.com
Content-Type: application/json
message-type: <VALUE>
subscription-id: <VALUE>
message-id: <VALUE>
topic-id: <VALUE>

{
"type": "SubscriptionConfirmation",
"token": "string",
"topic": "string",
"message": "string",
"messageId": "string",
"subject": "string",
"subscribeURL": "https://example.com",
"timestamp": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/subscriptions
Get all subscriptions

Scope required: notif.sub.read

Status Codes

• 200 OK – Get all subscriptions

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/subscriptions HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"uuid": "string",
"topic": "string",
"protocol": "http",
"address": "string",
"policy": "string",

(continues on next page)

7.3. Technical Specifications 111

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"active": true
}

]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

DELETE /v1/subscriptions/{uuid}
Unsubscribe from a topic

Unsubscribes a client from receiving notifications for a topic

Scope required: notif.sub.write

Parameters

• uuid (string) – the unique ID returned when the subscription was done

Status Codes

• 204 No Content – Subscription successfully removed

• 400 Bad Request – Bad request

• 404 Not Found – Subscription not found

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/subscriptions/confirm
Confirm the subscription

Confirm a subscription

Scope required: notif.sub.write

Query Parameters

• token (string) – the token sent to the endpoint (Required)

Status Codes

• 200 OK – Subscription successfully confirmed

• 400 Bad Request – Bad request (invalid token)

7.3. Technical Specifications 112

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

OSIA, Release 5.0.0

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/subscriptions/confirm?token=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Publisher

POST /v1/topics
Create a topic

Create a new topic. This service is idempotent.

Scope required: notif.topic.write

Query Parameters

• name (string) – The topic name (Required)

Status Codes

• 200 OK – Topic was created.

• 400 Bad Request – Bad request

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"uuid": "string",
"name": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

7.3. Technical Specifications 113

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/topics
Get all topics

Scope required: notif.topic.read

Status Codes

• 200 OK – Get all topics

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/topics HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"uuid": "string",
"name": "string"

}
]

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

DELETE /v1/topics/{uuid}
Delete a topic

Delete a topic

Scope required: notif.topic.write

Parameters

• uuid (string) – the unique ID returned when the topic was created

Status Codes

• 204 No Content – Topic successfully removed

• 400 Bad Request – Bad request

• 404 Not Found – Topic not found

• 500 Internal Server Error – Unexpected error

Example response:

7.3. Technical Specifications 114

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/topics/{uuid}/publish
Post a notification to a topic.

Scope required: notif.topic.publish

Parameters

• uuid (string) – the unique ID of the topic

Query Parameters

• subject (string) – the subject of the message.

Status Codes

• 200 OK – Notification published

• 400 Bad Request – Bad request

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Notification Message

This section describes the messages exchanged through notification. All messages are encoded in json. They are
generated by the emitter (the source of the event) and received by zero, one, or many receivers that have subscribed
to the type of event.

7.3. Technical Specifications 115

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

Table 7.1: Event Type & Message
Event Type Message
liveBirth

• source: identification of the system emitting the event
• uin of the new born
• uin1 of the first parent (optional if parent is unknown)
• uin2 of the second parent (optional if parent is unknown)

Example:

{
"source": "systemX",
"uin": "123456789",
"uin1": "123456789",
"uin2": "234567890"

}

death
• source: identification of the system emitting the event
• uin of the dead person

Example:

{
"source": "systemX",
"uin": "123456789"

}

birthCancellation
• source: identification of the system emitting the event
• uin of the person whose birth declaration is being cancelled

Example:

{
"source": "systemX",
"uin": "123456789",

}

foetalDeath
• source: identification of the system emitting the event
• uin of the new born

Example:

{
"source": "systemX",
"uin": "123456789"

}

marriage
• source: identification of the system emitting the event
• uin1 of the first conjoint
• uin2 of the second conjoint

Example:

{
"source": "systemX",
"uin1": "123456789",
"uin2": "234567890"

}

Continued on next page

7.3. Technical Specifications 116

OSIA, Release 5.0.0

Table 7.1 – continued from previous page
Event Type Message
divorce

• source: identification of the system emitting the event
• uin1 of the first conjoint
• uin2 of the second conjoint

Example:

{
"source": "systemX",
"uin1": "123456789",
"uin2": "234567890"

}

annulment
• source: identification of the system emitting the event
• uin1 of the first conjoint
• uin2 of the second conjoint

Example:

{
"source": "systemX",
"uin1": "123456789",
"uin2": "234567890"

}

separation
• source: identification of the system emitting the event
• uin1 of the first conjoint
• uin2 of the second conjoint

Example:

{
"source": "systemX",
"uin1": "123456789",
"uin2": "234567890"

}

adoption
• source: identification of the system emitting the event
• uin of the child
• uin1 of the first parent
• uin2 of the second parent (optional)

Example:

{
"source": "systemX",
"uin": "123456789",
"uin1": "234567890"

}

legitimation
• source: identification of the system emitting the event
• uin of the child
• uin1 of the first parent
• uin2 of the second parent (optional)

Example:

{
"source": "systemX",
"uin": "987654321",
"uin1": "123456789",
"uin2": "234567890"

}

Continued on next page

7.3. Technical Specifications 117

OSIA, Release 5.0.0

Table 7.1 – continued from previous page
Event Type Message
recognition

• source: identification of the system emitting the event
• uin of the child
• uin1 of the first parent
• uin2 of the second parent (optional)

Example:

{
"source": "systemX",
"uin": "123456789",
"uin2": "234567890"

}

changeOfName
• source: identification of the system emitting the event
• uin of the person

Example:

{
"source": "systemX",
"uin": "123456789"

}

changeOfGender
• source: identification of the system emitting the event
• uin of the person

Example:

{
"source": "systemX",
"uin": "123456789"

}

updatePerson
• source: identification of the system emitting the event
• uin of the person

Example:

{
"source": "systemX",
"uin": "123456789"

}

newPerson
• source: identification of the system emitting the event
• uin of the person

Example:

{
"source": "systemX",
"uin": "123456789"

}

Continued on next page

7.3. Technical Specifications 118

OSIA, Release 5.0.0

Table 7.1 – continued from previous page
Event Type Message
duplicatePerson

• source: identification of the system emitting the event
• uin of the person to be kept
• duplicates: list of uin for records identified as duplicates

Example:

{
"source": "systemX",
"uin": "123456789",
"duplicates": [

"234567890",
"345678901"

]
}

Note: Anonymized notification of events will be treated separately.

7.3.2 UIN Management

This is version 1.2.0 of this interface.

Get the OpenAPI file:

Services

POST /v1/uin
Request the generation of a new UIN. The request body should contain a list of attributes and their value,
formatted as a json dictionary.

Scope required: uin.generate

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – UIN is generated

• 400 Bad Request – Unexpected error

• 401 Unauthorized – Client must be authenticated

• 403 Forbidden – Service forbidden

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/uin?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1984-11-19"

}

Example response:

7.3. Technical Specifications 119

(c) Secure Identity Alliance

openapi: 3.0.0
info:
 description: |
 The OSIA UIN Interface.

 Change log:

 - 1.2.0:
 - Add error structure on 400 errors
 - Force additionalProperties to false when extension is not allowed
 - Add transactionId as a parameter (mandatory)
 - 1.1.0:
 - Addition of security
 - 1.0.0: Initial version

 title: OSIA UIN Interface
 version: 1.2.0
 license:
 name: SIA
 url: "https://raw.githubusercontent.com/SecureIdentityAlliance/osia/master/LICENSE"
servers:
 - url: https://uin.com/
paths:
 /v1/uin:
 post:
 description: |
 Request the generation of a new UIN.
 The request body should contain a list of attributes and their value, formatted as a json dictionary.
 operationId: generateUIN
 security:
 - BearerAuth: [uin.generate]
 parameters:
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 description: A set of attributes for the person
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Attributes'
 example:
 firstName: John
 lastName: Doo
 dateOfBirth: "1984-11-19"
 responses:
 200:
 description: UIN is generated
 content:
 application/json:
 schema:
 type: string
 example:
 '"1235567890"'
 400:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 401:
 description: Client must be authenticated
 403:
 description: Service forbidden
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

components:
 securitySchemes:
 BearerAuth:
 type: http
 scheme: bearer
 bearerFormat: JWT
 schemas:
 Error:
 type: object
 required:
 - code
 - message
 properties:
 code:
 type: integer
 format: int32
 message:
 type: string
 additionalProperties: false
 Attributes:
 type: object
 additionalProperties:
 oneOf:
 - type: string
 - type: integer
 - type: number
 - type: boolean
 # Or ?:
 #additionalProperties:
 # type: string

Secure Identity Alliance

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

HTTP/1.1 200 OK
Content-Type: application/json

"1235567890"

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

7.3.3 Data Access

This is version 1.3.0 of this interface.

Get the OpenAPI file:

Data Access Services

• queryPersonList
• queryPersonUIN
• readPersonAttributes
• matchPersonAttributes
• verifyPersonAttributes
• readDocument

Services

Person

GET /v1/persons
Query for persons using a set of attributes. Retrieve the UIN or the person attributes. This service is
used when the UIN is unknown. Example: http://registry.com/v1/persons?firstName=John&lastName=
Do&names=firstName

Scope required: pr.person.read or cr.person.read

Query Parameters

• attributes (object) – The attributes (names and values) used to query (Required)

• names (array) – The names of the attributes to return. If not provided, only the UIN
is returned

• offset (integer) – The offset of the query (first item of the response)

• limit (integer) – The maximum number of items to return

7.3. Technical Specifications 120

(c) Secure Identity Alliance

openapi: 3.0.0
info:
 description: |
 The OSIA Data Access Interface.

 Change log:

 - 1.3.0:
 - Add errors 400 and return error details
 - Force additionalProperties to false when extension is not allowed
 - Add pagination for query service. limit parameter replaces the max parameter.
 - 1.2.0: addition of security
 - 1.1.0: extended queryPersonUIN/queryPersonList operation to return a list of attributes, and not only a list of UIN
 - 1.0.0: first version proposed in OSIA.

 version: 1.3.0
 title: OSIA Data Access Interface
 license:
 name: SIA
 url: "https://raw.githubusercontent.com/SecureIdentityAlliance/osia/master/LICENSE"
servers:
 - url: https://pr.com/
 - url: https://cr.com/
tags:
 - name: Person
 - name: Document
paths:
 /v1/persons:
 get:
 description: |
 Query for persons using a set of attributes. Retrieve the UIN or the person attributes.
 This service is used when the UIN is unknown.
 Example: http://registry.com/v1/persons?firstName=John&lastName=Do&names=firstName
 operationId: queryPersonList
 security:
 - BearerAuth: [pr.person.read, cr.person.read]
 tags:
 - Person
 parameters:
 - name: attributes
 in: query
 description: The attributes (names and values) used to query
 required: true
 schema:
 type: object
 additionalProperties: true
 style: form
 explode: true
 example:
 firstName: John
 lastName: Do
 - name: names
 in: query
 description: The names of the attributes to return. If not provided, only the UIN is returned
 required: false
 schema:
 type: array
 items:
 type: string
 style: form
 explode: true
 example:
 - firstName
 - lastName
 - name: offset
 in: query
 description: The offset of the query (first item of the response)
 required: false
 schema:
 type: integer
 default: 0
 - name: limit
 in: query
 description: The maximum number of items to return
 required: false
 schema:
 type: integer
 default: 100

 responses:
 200:
 description: >
 The requested attributes for all found persons (a list of at least one entry).

 If no names are given, a flat list of UIN is returned.
 If at least one name is given, a list of dictionaries (one dictionary per record) is returned.
 content:
 application/json:
 schema:
 oneOf:
 - type: array
 minimum: 1
 items:
 type: string
 example:
 - "1235567890"
 - type: array
 minimum: 1
 items:
 type: object
 additionalProperties:
 oneOf:
 - type: string
 - type: integer
 - type: number
 - type: boolean
 - $ref: '#/components/schemas/Error'
 example:
 firstName: John
 lastName: Doo
 dob:
 code: 1023
 message: Unknown attribute name

 400:
 description: Invalid parameter
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 401:
 description: Client must be authenticated
 403:
 description: Service forbidden
 404:
 description: No record found
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{uin}:
 get:
 description: "Read attributes for a person. Example: http://registry.com/v1/persons/123456789?attributeNames=firstName&attributeNames=lastName&attributeNames=dob"
 operationId: readPersonAttributes
 security:
 - BearerAuth: [pr.person.read, cr.person.read]
 tags:
 - Person
 parameters:
 - name: uin
 in: path
 description: Unique Identity Number
 required: true
 schema:
 type: string
 - name: attributeNames
 in: query
 description: The names of the attributes requested for this person
 required: true
 schema:
 type: array
 items:
 type: string
 example:
 - firstName
 - lastName
 - dob
 responses:
 200:
 description: Requested attributes values or error description.
 content:
 application/json:
 schema:
 type: object
 additionalProperties:
 oneOf:
 - type: string
 - type: integer
 - type: number
 - type: boolean
 - $ref: '#/components/schemas/Error'
 example:
 firstName: John
 lastName: Doo
 dob:
 code: 1023
 message: Unknown attribute name
 400:
 description: Invalid parameter
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 401:
 description: Client must be authenticated
 403:
 description: Service forbidden
 404:
 description: Unknown uin
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{uin}/match:
 post:
 description: |
 Match person attributes.
 This service is used to check the value of attributes without exposing private data.

 The request body should contain a list of attributes and their value, formatted as a json dictionary.
 operationId: matchPersonAttributes
 security:
 - BearerAuth: [pr.person.match, cr.person.match]
 tags:
 - Person
 parameters:
 - name: uin
 in: path
 description: Unique Identity Number
 required: true
 schema:
 type: string
 requestBody:
 description: A set of attributes for the person
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Attributes'
 example:
 firstName: John
 lastName: Doo
 dateOfBirth: "1984-11-19"
 responses:
 200:
 description: |
 Information about non matching attributes. Returns a list of matching result.
 An empty list indicates all attributes were matching.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/MatchingError'
 example:
 - attributeName: firstName
 errorCode: 1
 400:
 description: Invalid parameter
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 401:
 description: Client must be authenticated
 403:
 description: Service forbidden
 404:
 description: Unknown uin
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{uin}/verify:
 post:
 description: |
 Evaluate expressions on person attributes.
 This service is used to evaluate simple expressions on
 person's attributes without exposing private data

 The request body should contain a list of expressions.
 operationId: verifyPersonAttributes
 security:
 - BearerAuth: [pr.person.verify, cr.person.verify]
 tags:
 - Person
 parameters:
 - name: uin
 in: path
 description: Unique Identity Number
 required: true
 schema:
 type: string
 requestBody:
 description: A set of expressions on attributes of the person
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Expressions'
 example:
 - attributeName: firstName
 operator: "="
 value: John
 - attributeName: dateOfBirth
 operator: "<"
 value: "1990-12-31"
 responses:
 200:
 description: The expressions are all true (true is returned) or one is false (false is returned)
 content:
 application/json:
 schema:
 type: boolean
 example:
 true
 400:
 description: Invalid parameter
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 401:
 description: Client must be authenticated
 403:
 description: Forbidden access. The service is forbidden or one of the attributes is forbidden.
 404:
 description: Unknown uin
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{uin}/document:
 get:
 description: |
 Read in an unstructured format (PDF, image) a document such as a marriage certificate.
 Example: ``http://registry.com/v1/persons/123456789/document?doctype=marriage&secondaryUin=234567890&format=pdf``
 operationId: readDocument
 security:
 - BearerAuth: [pr.document.read, cr.document.read]
 tags:
 - Document
 parameters:
 - name: uin
 in: path
 description: Unique Identity Number
 required: true
 schema:
 type: string
 - name: secondaryUin
 in: query
 description: |
 Unique Identity Number of a second person linked to the requested document.
 Example: wife, husband
 required: false
 schema:
 type: string
 - name: doctype
 in: query
 description: The type of document
 required: true
 schema:
 type: string
 - name: format
 in: query
 description: |
 The expected format of the document.
 If the document is not available at this format, it must be converted.
 TBD: one format for certificate data.
 required: true
 schema:
 type: string
 enum: ['pdf', 'jpeg', 'png', 'TBD']
 responses:
 200:
 description: The document(s) is/are found and returned, as binary data in a MIME multipart structure.
 content:
 multipart/mixed:
 schema:
 type: object
 properties:
 documents:
 type: array
 items:
 type: string
 format: binary
 additionalProperties: false
 encoding:
 documents:
 contentType: application/pdf, image/jpeg, image/png
 400:
 description: Invalid parameter
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 401:
 description: Client must be authenticated
 403:
 description: Service forbidden
 404:
 description: Unknown uin
 415:
 description: Unsupported format
 500:
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

components:
 securitySchemes:
 BearerAuth:
 type: http
 scheme: bearer
 bearerFormat: JWT
 schemas:
 Error:
 type: object
 required:
 - code
 - message
 properties:
 code:
 type: integer
 format: int32
 message:
 type: string
 additionalProperties: false
 Attributes:
 type: object
 additionalProperties:
 oneOf:
 - type: string
 - type: integer
 - type: number
 - type: boolean
 # Or ?:
 #additionalProperties: true
 Expression:
 type: object
 required:
 - attributeName
 - operator
 - value
 properties:
 attributeName:
 type: string
 operator:
 type: string
 enum: ['<', '>', '=', '>=', '<=']
 value:
 oneOf:
 - type: string
 - type: integer
 - type: number
 - type: boolean
 additionalProperties: false
 Expressions:
 type: array
 items:
 $ref: '#/components/schemas/Expression'
 MatchingError:
 type: array
 items:
 type: object
 properties:
 attributeName:
 type: string
 errorCode:
 type: integer
 format: int32
 enum: [0, 1]
 description: 0=attribute does not exist; 1=attribute exists but does not match
 additionalProperties: false

Secure Identity Alliance

http://registry.com/v1/persons?firstName=John&lastName=Do&names=firstName
http://registry.com/v1/persons?firstName=John&lastName=Do&names=firstName

OSIA, Release 5.0.0

Status Codes

• 200 OK – The requested attributes for all found persons (a list of at least one entry). If
no names are given, a flat list of UIN is returned. If at least one name is given, a list of
dictionaries (one dictionary per record) is returned.

• 400 Bad Request – Invalid parameter

• 401 Unauthorized – Client must be authenticated

• 403 Forbidden – Service forbidden

• 404 Not Found – No record found

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons?firstName=John&lastName=Do HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
"string"

]

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/persons/{uin}
Read attributes for a person. Example: http://registry.com/v1/persons/123456789?attributeNames=
firstName&attributeNames=lastName&attributeNames=dob

Scope required: pr.person.read or cr.person.read

Parameters

• uin (string) – Unique Identity Number

Query Parameters

• attributeNames (array) – The names of the attributes requested for this person
(Required)

Status Codes

• 200 OK – Requested attributes values or error description.

• 400 Bad Request – Invalid parameter

7.3. Technical Specifications 121

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://registry.com/v1/persons/123456789?attributeNames=firstName&attributeNames=lastName&attributeNames=dob
http://registry.com/v1/persons/123456789?attributeNames=firstName&attributeNames=lastName&attributeNames=dob
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

OSIA, Release 5.0.0

• 401 Unauthorized – Client must be authenticated

• 403 Forbidden – Service forbidden

• 404 Not Found – Unknown uin

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{uin}?attributeNames=%5B%27string%27%5D HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"firstName": "John",
"lastName": "Doo",
"dob": {

"code": 1023,
"message": "Unknown attribute name"

}
}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/persons/{uin}/match
Match person attributes. This service is used to check the value of attributes without exposing private data.

The request body should contain a list of attributes and their value, formatted as a json dictionary.

Scope required: pr.person.match or cr.person.match

Parameters

• uin (string) – Unique Identity Number

Status Codes

• 200 OK – Information about non matching attributes. Returns a list of matching result.
An empty list indicates all attributes were matching.

• 400 Bad Request – Invalid parameter

• 401 Unauthorized – Client must be authenticated

• 403 Forbidden – Service forbidden

• 404 Not Found – Unknown uin

7.3. Technical Specifications 122

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

OSIA, Release 5.0.0

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons/{uin}/match HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1984-11-19"

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"attributeName": "firstName",
"errorCode": 1

}
]

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/persons/{uin}/verify
Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s
attributes without exposing private data

The request body should contain a list of expressions.

Scope required: pr.person.verify or cr.person.verify

Parameters

• uin (string) – Unique Identity Number

Status Codes

• 200 OK – The expressions are all true (true is returned) or one is false (false is returned)

• 400 Bad Request – Invalid parameter

• 401 Unauthorized – Client must be authenticated

• 403 Forbidden – Forbidden access. The service is forbidden or one of the attributes is
forbidden.

• 404 Not Found – Unknown uin

7.3. Technical Specifications 123

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

OSIA, Release 5.0.0

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons/{uin}/verify HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

[
{

"attributeName": "firstName",
"operator": "=",
"value": "John"

},
{

"attributeName": "dateOfBirth",
"operator": "<",
"value": "1990-12-31"

}
]

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

true

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Document

GET /v1/persons/{uin}/document
Read in an unstructured format (PDF, image) a document such as a marriage certifi-
cate. Example: http://registry.com/v1/persons/123456789/document?
doctype=marriage&secondaryUin=234567890&format=pdf

Scope required: pr.document.read or cr.document.read

Parameters

• uin (string) – Unique Identity Number

Query Parameters

• secondaryUin (string) – Unique Identity Number of a second person linked to
the requested document. Example: wife, husband

• doctype (string) – The type of document (Required)

7.3. Technical Specifications 124

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

• format (string) – The expected format of the document. If the document is not
available at this format, it must be converted. TBD: one format for certificate data.
(Required)

Status Codes

• 200 OK – The document(s) is/are found and returned, as binary data in a MIME multi-
part structure.

• 400 Bad Request – Invalid parameter

• 401 Unauthorized – Client must be authenticated

• 403 Forbidden – Service forbidden

• 404 Not Found – Unknown uin

• 415 Unsupported Media Type – Unsupported format

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{uin}/document?doctype=string&format=pdf HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Data Model

Person Attributes

When exchanged in the services described in this document, the persons attributes will apply the following rules:

7.3. Technical Specifications 125

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

Table 7.2: Person Attributes
Attribute Name Description Format
uin Unique Identity Number Text
firstName First name Text
lastName Last name Text
spouseName Spouse name Text
dateOfBirth Date of birth Date (iso8601). Example: 1987-11-17
placeOfBirth Place of birth Text
gender Gender Number (iso5218). One of 0 (Not known), 1 (Male),

2 (Female), 9 (Not applicable)
dateOfDeath Date of death Date (iso8601). Example: 2018-11-17
placeOfDeath Place of death Text
reasonOfDeath Reason of death Text
status Status. Example: missing,

wanted, dead, etc.
Text

Matching Error

A list of:

Table 7.3: Matching Error Object
Attribute Type Description Mandatory
attributeName String Attribute name (See Person Attributes) Yes
errorCode 32 bits integer Error code. Possible values: 0 (attribute

does not exist); 1 (attribute exists but
does not match)

Yes

Expression

Table 7.4: Expression Object
Attribute Type Description Mandatory
attributeName String Attribute name (See Person Attributes) Yes
operator String Operator to apply. Possible values: <, >,

=, >=, <=
Yes

value string, or integer, or
boolean

The value to be evaluated Yes

Error

Table 7.5: Error Object
Attribute Type Description Mandatory
code 32 bits integer Error code Yes
message String Error message Yes

7.3.4 Enrollment

This is version 1.1.0 of this interface.

Get the OpenAPI file:

7.3. Technical Specifications 126

(c) Secure Identity Alliance

openapi: 3.0.0
info:
 description: |
 The OSIA Enrollment Interface

 Change log:

 - 1.1.0:
 - Add error structure on 400 errors
 - Add additional documentType and open it for extension
 - Force additionalProperties to false when extension is not allowed
 - Rename operationId for create/read buffer
 - Add 404 error when missing
 - Add Digest header in create/read buffer
 - Support multiple content types for create/read buffer
 - Remove enrollmentId from the response of createEnrollment
 - Make the enrollment status optional in create & update operations
 - Add a contextualData entity to match what exists in population registry
 - Add pagination for findEnrollments
 - Add fields on BiometricData: instance, metadata, comment, missing
 - 1.0.0: Initial version

 version: 1.1.0
 title: OSIA Enrollment Interface
 license:
 name: SIA
 url: "https://raw.githubusercontent.com/SecureIdentityAlliance/osia/master/LICENSE"
tags:
 - name: Enrollment
 - name: Buffer
servers:
 - url: https://enrollment.com/
paths:

 /v1/enrollments/{enrollmentId}:
 post:
 tags:
 - Enrollment
 summary: Create one enrollment
 operationId: createEnrollment
 security:
 - BearerAuth: [enroll.write]
 parameters:
 - name: enrollmentId
 in: path
 description: the id of the enrollment
 required: true
 schema:
 type: string
 - name: finalize
 in: query
 description: Flag to indicate that data was collected (default is false).
 required: false
 schema:
 type: boolean
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Enrollment'
 responses:
 '204':
 description: Operation successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Operation not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 get:
 tags:
 - Enrollment
 summary: Read one enrollment
 operationId: readEnrollment
 security:
 - BearerAuth: [enroll.read]
 parameters:
 - name: enrollmentId
 in: path
 description: the id of the enrollment
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: attributes
 in: query
 description: The (optional) set of required attributes to retrieve. If not present all attributes will be returned.
 required: false
 schema:
 type: array
 items:
 type: string
 example:
 - surname
 - familyname
 responses:
 '200':
 description: Read successful
 content:
 application/json:
 schema:
 allOf:
 - $ref: '#/components/schemas/Enrollment'
 - type: object
 required:
 - status

 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 put:
 tags:
 - Enrollment
 summary: Update one enrollment
 operationId: updateEnrollment
 security:
 - BearerAuth: [enroll.write]
 parameters:
 - name: enrollmentId
 in: path
 description: the id of the enrollment
 required: true
 schema:
 type: string
 - name: finalize
 in: query
 description: Flag to indicate that data was collected (default is false).
 required: false
 schema:
 type: boolean
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Enrollment'
 responses:
 '204':
 description: Update successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Update not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 patch:
 tags:
 - Enrollment
 summary: Update partially one enrollment
 description: Update partially an enrollment. Payload content is a partial enrollment object compliant with RFC7396.
 operationId: partialUpdateEnrollment
 security:
 - BearerAuth: [enroll.write]
 parameters:
 - name: enrollmentId
 in: path
 description: the id of the enrollment
 required: true
 schema:
 type: string
 - name: finalize
 in: query
 description: Flag to indicate that data was collected (default is false).
 required: false
 schema:
 type: boolean
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Enrollment'
 responses:
 '204':
 description: Update successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Update not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 delete:
 tags:
 - Enrollment
 summary: Delete one enrollment
 operationId: deleteEnrollment
 security:
 - BearerAuth: [enroll.write]
 parameters:
 - name: enrollmentId
 in: path
 description: the id of the enrollment
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '204':
 description: Delete successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Operation not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/enrollments/{enrollmentId}/finalize:
 put:
 tags:
 - Enrollment
 summary: Finalize one enrollment
 operationId: finalizeEnrollment
 security:
 - BearerAuth: [enroll.write]
 parameters:
 - name: enrollmentId
 in: path
 description: the id of the enrollment
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '204':
 description: Update successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Update not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/enrollments:
 post:
 tags:
 - Enrollment
 summary: Retrieve a list of enrollments which match passed in search criteria
 operationId: findEnrollments
 security:
 - BearerAuth: [enroll.read]
 parameters:
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: offset
 in: query
 description: The offset of the query (first item of the response)
 required: false
 schema:
 type: integer
 default: 0
 - name: limit
 in: query
 description: The maximum number of items to return
 required: false
 schema:
 type: integer
 default: 100
 requestBody:
 description: A set of expressions on attributes of the person
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Expressions'
 example:
 - attributeName: firstName
 operator: "="
 value: John
 - attributeName: dateOfBirth
 operator: "<"
 value: "1990-12-31"
 responses:
 '200':
 description: Query successful
 content:
 application/json:
 schema:
 type: array
 items:
 allOf:
 - $ref: '#/components/schemas/Enrollment'
 - type: object
 required:
 - status

 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Query not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/enrollments/{enrollmentId}/buffer:
 post:
 tags:
 - Buffer
 summary: Create a buffer
 description: This service is used to send separately the buffers of the images
 operationId: createBuffer
 security:
 - BearerAuth: [enroll.buf.write]
 parameters:
 - name: enrollmentId
 in: path
 description: the id of the enrollment
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: Digest
 in: header
 description: the buffer digest, as defined per RFC 3230.
 schema:
 type: string
 example: "SHA=thvDyvhfIqlvFe+A9MYgxAfm1q5="
 required: false
 requestBody:
 description: The image of the request
 required: true
 content:
 application/*:
 schema:
 type: string
 format: binary
 example: ABCDEFG...
 image/*:
 schema:
 type: string
 format: binary
 example: ABCDEFG...
 responses:
 '201':
 description: Operation successful
 content:
 application/json:
 schema:
 type: object
 required:
 - bufferId
 properties:
 bufferId:
 type: string
 additionalProperties: false
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Operation not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/enrollments/{enrollmentId}/buffer/{bufferId}:
 get:
 tags:
 - Buffer
 summary: Read a buffer
 description: |
 This service is used to get the buffer of the images.
 The content type of the response is the content type used when the buffer was created.
 operationId: readBuffer
 security:
 - BearerAuth: [enroll.buf.read]
 parameters:
 - name: enrollmentId
 in: path
 description: the id of the enrollment
 required: true
 schema:
 type: string
 - name: bufferId
 in: path
 description: the id of the buffer
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '200':
 description: Read successful
 headers:
 Digest:
 description: the buffer digest, as defined per RFC 3230.
 schema:
 type: string
 example: "SHA=thvDyvhfIqlvFe+A9MYgxAfm1q5="
 required: false
 content:
 application/*:
 schema:
 description: The image
 type: string
 format: binary
 example: ABCDEFG...
 image/*:
 schema:
 description: The image
 type: string
 format: binary
 example: ABCDEFG...
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Update not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

components:
 securitySchemes:
 BearerAuth:
 type: http
 scheme: bearer
 bearerFormat: JWT
 schemas:
 Error:
 type: object
 required:
 - code
 - message
 properties:
 code:
 description: Error code
 type: integer
 format: int32
 message:
 description: Error message
 type: string
 additionalProperties: false
 Enrollment:
 type: object
 required:
 - enrollmentType
 properties:
 enrollmentId:
 type: string
 status:
 type: string
 enum: [FINALIZED, IN_PROGRESS]
 enrollmentType:
 type: string
 description: Type of the enrollment
 enrollmentFlags:
 type: array
 items:
 $ref: '#/components/schemas/EnrollmentFlags'
 requestData:
 type: array
 items:
 $ref: '#/components/schemas/RequestData'
 contextualData:
 $ref: '#/components/schemas/ContextualData'
 biographicData:
 $ref: '#/components/schemas/BiographicData'
 biometricData:
 type: array
 items:
 $ref: '#/components/schemas/BiometricData'
 documentData:
 type: array
 items:
 $ref: '#/components/schemas/DocumentData'
 additionalProperties: false
 RequestData:
 type: object
 additionalProperties: true
 description: The data describing the request associated to the enrollment (i.e. why the enrollment is done). Can be extended.
 example:
 requestType: "IDCARD_ISSUANCE"
 deliveryPlace: "paris"
 other: "other"
 EnrollmentFlags:
 type: object
 additionalProperties: true
 description: The enrollment custom flags (i.e. the properties of the enrollment process). Can be extended.
 example:
 timeout: 3600
 other: "other"
 ContextualData:
 type: object
 additionalProperties: true
 example:
 enrollmentDate: "2019-01-11"
 BiographicData:
 type: object
 additionalProperties: true
 description: The enrollment biographic data. Can be extended.
 example:
 dateOfBirth: "1985-11-30"
 gender: M
 nationality: FRA
 BiometricData:
 type: object
 required:
 - biometricType
 properties:
 biometricType:
 $ref: '#/components/schemas/BiometricType'
 biometricSubType:
 $ref: '#/components/schemas/BiometricSubType'
 instance:
 type: string
 description: Used to separate two distincts biometric items of the same type and subtype
 image:
 type: string
 format: byte
 description: Base64-encoded image
 imageRef:
 type: string
 format: uri
 description: URI to an image
 example: "http://imageserver.com/image?id=00003"
 captureDate:
 type: string
 format: date
 example: "2019-05-21"
 captureDevice:
 type: string
 description: A string identifying the device used to capture the biometric
 impressionType:
 $ref: '#/components/schemas/ImpressionType'
 width:
 type: integer
 description: the width of the image
 height:
 type: integer
 description: the height of the image
 bitdepth:
 type: integer
 mimetype:
 type: string
 description: the nature and format of a document. The mime type definitions should be in compliance with RFC 6838.
 resolution:
 type: integer
 description: the image resolution (in DPI)
 compression:
 $ref: '#/components/schemas/CompressionType'
 missing:
 description: Optional properties indicating if a part of the biometric data is missing
 type: array
 items:
 $ref: '#/components/schemas/MissingType'
 metadata:
 type: string
 description: An optional string used to convey information vendor-specific
 comment:
 type: string
 description: A comment about the biometric data
 additionalProperties: false
 MissingType:
 type: object
 properties:
 biometricSubType:
 $ref: '#/components/schemas/BiometricSubType'
 presence:
 type: string
 enum: [BANDAGED, AMPUTATED, DAMAGED]
 additionalProperties: false
 DocumentPart:
 type: object
 properties:
 pages:
 type: array
 description: The pages included in this part. Can be a single page number, or a list.
 minItems: 1
 items:
 type: integer
 data:
 type: string
 format: byte
 description: Base64-encoded data of the document
 dataRef:
 type: string
 format: uri
 description: URI to the data
 example: "http://server.com/buffer?id=00003"
 width:
 type: integer
 description: the width of the image in pixels
 height:
 type: integer
 description: the height of the image in pixels
 captureDate:
 type: string
 format: date
 example: "2019-05-21"
 captureDevice:
 type: string
 description: A string identifying the device used to capture the document part
 mimetype:
 type: string
 description: the nature and format of a document. The mime type definitions should be in compliance with RFC 6838.
 additionalProperties: false
 DocumentData:
 type: object
 required:
 - documentType
 - parts
 properties:
 documentType:
 type: string
 description: Type of document.
 enum: [ID_CARD, PASSPORT, INVOICE, BIRTH_CERTIFICATE, OTHER]
 documentTypeOther:
 type: string
 description: Details about the type of document when OTHER is used.
 instance:
 type: string
 description: "Used to separate two distincts documents of the same type (ex: two passports)"
 parts:
 type: array
 minItems: 1
 items:
 $ref: '#/components/schemas/DocumentPart'
 additionalProperties: false
 Expression:
 type: object
 required:
 - attributeName
 - operator
 - value
 properties:
 attributeName:
 type: string
 operator:
 type: string
 enum: ['<', '>', '=', '>=', '<=', '!=']
 value:
 oneOf:
 - type: string
 - type: integer
 - type: number
 - type: boolean
 additionalProperties: false
 Expressions:
 type: array
 items:
 $ref: '#/components/schemas/Expression'
 CompressionType:
 type: string
 enum: [NONE, WSQ, JPEG, JPEG2000, PNG]
 ImpressionType:
 type: string
 enum:
 - LIVE_SCAN_PLAIN
 - LIVE_SCAN_ROLLED
 - NONLIVE_SCAN_PLAIN
 - NONLIVE_SCAN_ROLLED
 - LATENT_IMPRESSION
 - LATENT_TRACING
 - LATENT_PHOTO
 - LATENT_LIFT
 - LIVE_SCAN_SWIPE
 - LIVE_SCAN_VERTICAL_ROLL
 - LIVE_SCAN_PALM
 - NONLIVE_SCAN_PALM
 - LATENT_PALM_IMPRESSION
 - LATENT_PALM_TRACING
 - LATENT_PALM_PHOTO
 - LATENT_PALM_LIFT
 - LIVE_SCAN_OPTICAL_CONTACTLESS_PLAIN
 - OTHER
 - UNKNOWN
 BiometricType:
 type: string
 enum:
 - FACE
 - FINGER
 - IRIS
 - SIGNATURE
 - UNKNOWN
 BiometricSubType:
 type: string
 enum:
 - UNKNOWN
 - RIGHT_THUMB
 - RIGHT_INDEX
 - RIGHT_MIDDLE
 - RIGHT_RING
 - RIGHT_LITTLE
 - LEFT_THUMB
 - LEFT_INDEX
 - LEFT_MIDDLE
 - LEFT_RING
 - LEFT_LITTLE
 - PLAIN_RIGHT_FOUR_FINGERS
 - PLAIN_LEFT_FOUR_FINGERS
 - PLAIN_THUMBS

 - UNKNOWN_PALM
 - RIGHT_FULL_PALM
 - RIGHT_WRITERS_PALM
 - LEFT_FULL_PALM
 - LEFT_WRITERS_PALM
 - RIGHT_LOWER_PALM
 - RIGHT_UPPER_PALM
 - LEFT_LOWER_PALM
 - LEFT_UPPER_PALM
 - RIGHT_OTHER
 - LEFT_OTHER
 - RIGHT_INTERDIGITAL
 - RIGHT_THENAR
 - LEFT_INTERDIGITAL
 - LEFT_THENAR
 - LEFT_HYPOTHENAR

 - RIGHT_INDEX_AND_MIDDLE
 - RIGHT_MIDDLE_AND_RING
 - RIGHT_RING_AND_LITTLE
 - LEFT_INDEX_AND_MIDDLE
 - LEFT_MIDDLE_AND_RING
 - LEFT_RING_AND_LITTLE
 - RIGHT_INDEX_AND_LEFT_INDEX
 - RIGHT_INDEX_AND_MIDDLE_AND_RING
 - RIGHT_MIDDLE_AND_RING_AND_LITTLE
 - LEFT_INDEX_AND_MIDDLE_AND_RING
 - LEFT_MIDDLE_AND_RING_AND_LITTLE

 - EYE_UNDEF
 - EYE_RIGHT
 - EYE_LEFT

 - PORTRAIT
 - LEFT_PROFILE
 - RIGHT_PROFILE

Secure Identity Alliance

OSIA, Release 5.0.0

Enrollment Services

• createEnrollment
• readEnrollment
• updateEnrollment
• partialUpdateEnrollment
• deleteEnrollment
• finalizeEnrollment
• findEnrollments
• createBuffer
• readBuffer

Services

Enrollment

POST /v1/enrollments/{enrollmentId}
Create one enrollment

Scope required: enroll.write

Parameters

• enrollmentId (string) – the id of the enrollment

Query Parameters

• finalize (boolean) – Flag to indicate that data was collected (default is false).

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/enrollments/{enrollmentId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"enrollmentId": "string",
"status": "FINALIZED",
"enrollmentType": "string",
"enrollmentFlags": [

{
"timeout": 3600,
"other": "other"

}
],
"requestData": [

{
"requestType": "IDCARD_ISSUANCE",
"deliveryPlace": "paris",
"other": "other"

(continues on next page)

7.3. Technical Specifications 127

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

}
],
"contextualData": {

"enrollmentDate": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"mimetype": "string",
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"documentData": [

{
"documentType": "ID_CARD",
"documentTypeOther": "string",
"instance": "string",
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"captureDate": "2020-12-17",
"captureDevice": "string",
"mimetype": "string"

}
]

}
]

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

7.3. Technical Specifications 128

OSIA, Release 5.0.0

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/enrollments/{enrollmentId}
Read one enrollment

Scope required: enroll.read

Parameters

• enrollmentId (string) – the id of the enrollment

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• attributes (array) – The (optional) set of required attributes to retrieve. If not
present all attributes will be returned.

Status Codes

• 200 OK – Read successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/enrollments/{enrollmentId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"enrollmentId": "string",
"status": "FINALIZED",
"enrollmentType": "string",
"enrollmentFlags": [

{
"timeout": 3600,
"other": "other"

}
],
"requestData": [

{
"requestType": "IDCARD_ISSUANCE",
"deliveryPlace": "paris",
"other": "other"

}
],
"contextualData": {

"enrollmentDate": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

(continues on next page)

7.3. Technical Specifications 129

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"mimetype": "string",
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"documentData": [

{
"documentType": "ID_CARD",
"documentTypeOther": "string",
"instance": "string",
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"captureDate": "2020-12-17",
"captureDevice": "string",
"mimetype": "string"

}
]

}
]

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

7.3. Technical Specifications 130

OSIA, Release 5.0.0

PUT /v1/enrollments/{enrollmentId}
Update one enrollment

Scope required: enroll.write

Parameters

• enrollmentId (string) – the id of the enrollment

Query Parameters

• finalize (boolean) – Flag to indicate that data was collected (default is false).

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Update successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

PUT /v1/enrollments/{enrollmentId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"enrollmentId": "string",
"status": "FINALIZED",
"enrollmentType": "string",
"enrollmentFlags": [

{
"timeout": 3600,
"other": "other"

}
],
"requestData": [

{
"requestType": "IDCARD_ISSUANCE",
"deliveryPlace": "paris",
"other": "other"

}
],
"contextualData": {

"enrollmentDate": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"mimetype": "string",

(continues on next page)

7.3. Technical Specifications 131

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"documentData": [

{
"documentType": "ID_CARD",
"documentTypeOther": "string",
"instance": "string",
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"captureDate": "2020-12-17",
"captureDevice": "string",
"mimetype": "string"

}
]

}
]

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

PATCH /v1/enrollments/{enrollmentId}
Update partially one enrollment

Update partially an enrollment. Payload content is a partial enrollment object compliant with RFC7396.

Scope required: enroll.write

Parameters

• enrollmentId (string) – the id of the enrollment

Query Parameters

• finalize (boolean) – Flag to indicate that data was collected (default is false).

• transactionId (string) – The id of the transaction (Required)

7.3. Technical Specifications 132

OSIA, Release 5.0.0

Status Codes

• 204 No Content – Update successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

PATCH /v1/enrollments/{enrollmentId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"enrollmentId": "string",
"status": "FINALIZED",
"enrollmentType": "string",
"enrollmentFlags": [

{
"timeout": 3600,
"other": "other"

}
],
"requestData": [

{
"requestType": "IDCARD_ISSUANCE",
"deliveryPlace": "paris",
"other": "other"

}
],
"contextualData": {

"enrollmentDate": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"mimetype": "string",
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"documentData": [

{
"documentType": "ID_CARD",

(continues on next page)

7.3. Technical Specifications 133

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"documentTypeOther": "string",
"instance": "string",
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"captureDate": "2020-12-17",
"captureDevice": "string",
"mimetype": "string"

}
]

}
]

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

DELETE /v1/enrollments/{enrollmentId}
Delete one enrollment

Scope required: enroll.write

Parameters

• enrollmentId (string) – the id of the enrollment

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Delete successful

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

(continues on next page)

7.3. Technical Specifications 134

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

PUT /v1/enrollments/{enrollmentId}/finalize
Finalize one enrollment

Scope required: enroll.write

Parameters

• enrollmentId (string) – the id of the enrollment

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Update successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/enrollments
Retrieve a list of enrollments which match passed in search criteria

Scope required: enroll.read

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• offset (integer) – The offset of the query (first item of the response)

7.3. Technical Specifications 135

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

• limit (integer) – The maximum number of items to return

Status Codes

• 200 OK – Query successful

• 400 Bad Request – Bad request

• 403 Forbidden – Query not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/enrollments?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

[
{

"attributeName": "firstName",
"operator": "=",
"value": "John"

},
{

"attributeName": "dateOfBirth",
"operator": "<",
"value": "1990-12-31"

}
]

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"enrollmentId": "string",
"status": "FINALIZED",
"enrollmentType": "string",
"enrollmentFlags": [

{
"timeout": 3600,
"other": "other"

}
],
"requestData": [

{
"requestType": "IDCARD_ISSUANCE",
"deliveryPlace": "paris",
"other": "other"

}
],
"contextualData": {

"enrollmentDate": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",

(continues on next page)

7.3. Technical Specifications 136

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"mimetype": "string",
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"documentData": [

{
"documentType": "ID_CARD",
"documentTypeOther": "string",
"instance": "string",
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"captureDate": "2020-12-17",
"captureDevice": "string",
"mimetype": "string"

}
]

}
]

}
]

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Buffer

POST /v1/enrollments/{enrollmentId}/buffer
Create a buffer

This service is used to send separately the buffers of the images

7.3. Technical Specifications 137

OSIA, Release 5.0.0

Scope required: enroll.buf.write

Parameters

• enrollmentId (string) – the id of the enrollment

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 201 Created – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Request Headers

• Digest – the buffer digest, as defined per RFC 3230.

Example request:

POST /v1/enrollments/{enrollmentId}/buffer?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/*
Authorization: Bearer cn389ncoiwuencr
Digest: SHA=thvDyvhfIqlvFe+A9MYgxAfm1q5=

ABCDEFG...

Example request:

POST /v1/enrollments/{enrollmentId}/buffer?transactionId=string HTTP/1.1
Host: example.com
Content-Type: image/*
Authorization: Bearer cn389ncoiwuencr
Digest: SHA=thvDyvhfIqlvFe+A9MYgxAfm1q5=

ABCDEFG...

Example response:

HTTP/1.1 201 Created
Content-Type: application/json

{
"bufferId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{

(continues on next page)

7.3. Technical Specifications 138

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"code": 1,
"message": "string"

}

GET /v1/enrollments/{enrollmentId}/buffer/{bufferId}
Read a buffer

This service is used to get the buffer of the images. The content type of the response is the content type used
when the buffer was created.

Scope required: enroll.buf.read

Parameters

• enrollmentId (string) – the id of the enrollment

• bufferId (string) – the id of the buffer

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Read successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Response Headers

• Digest – the buffer digest, as defined per RFC 3230.

Example request:

GET /v1/enrollments/{enrollmentId}/buffer/{bufferId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/*
Digest: SHA=thvDyvhfIqlvFe+A9MYgxAfm1q5=

ABCDEFG...

Example response:

HTTP/1.1 200 OK
Content-Type: image/*
Digest: SHA=thvDyvhfIqlvFe+A9MYgxAfm1q5=

ABCDEFG...

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Digest: SHA=thvDyvhfIqlvFe+A9MYgxAfm1q5=

{
"code": 1,
"message": "string"

}

7.3. Technical Specifications 139

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json
Digest: SHA=thvDyvhfIqlvFe+A9MYgxAfm1q5=

{
"code": 1,
"message": "string"

}

Data Model

To be completed

7.3.5 Population Registry Management

This is version 1.3.0 of this interface.

Get the OpenAPI file:

Population Registry Services

• findPersons
• createPerson
• readPerson
• updatePerson
• deletePerson
• mergePerson
• readIdentities
• createIdentity
• createIdentityWithId
• readIdentity
• updateIdentity
• partialUpdateIdentity
• deleteIdentity
• setIdentityStatus
• defineReference
• readReference
• readGalleries
• readGalleryContent

Services

Person

POST /v1/persons
Query for persons

Retrieve a list of personId corresponding to the records with one identity matching the criteria.

By default, all identities are used in the search.

Scope required: pr.person.read

Query Parameters

• transactionId (string) – The id of the transaction (Required)

7.3. Technical Specifications 140

(c) Secure Identity Alliance

openapi: 3.0.0
info:
 description: |
 The OSIA Population Registry Interface

 Change log:

 - 1.3.0:
 - Add error structure on 400 errors
 - Add additional documentType and open it for extension
 - Add signature in biometricType
 - Force additionalProperties to false when extension is not allowed
 - Pagination when accessing gallery content
 - Add a query service, searching on all the identities of a person
 - Add fields on BiometricData: instance, metadata, comment, missing
 - 1.2.0:
 - Addition of security
 - 1.1.0:
 - Add the merge service
 - Change the mandatory flag for the status, based on the type of service
 - 1.0.0: Initial version

 version: 1.3.0
 title: OSIA Population Registry Interface
 license:
 name: SIA
 url: "https://raw.githubusercontent.com/SecureIdentityAlliance/osia/master/LICENSE"
tags:
 - name: Person
 - name: Identity
 - name: Reference
 - name: Gallery
servers:
 - url: https://pr.com/
paths:

 /v1/persons:
 post:
 tags:
 - Person
 summary: Query for persons
 description: |
 Retrieve a list of personId corresponding to the records with one identity matching the criteria.

 By default, all identities are used in the search.
 operationId: findPersons
 security:
 - BearerAuth: [pr.person.read]
 parameters:
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: group
 in: query
 description: Group all matching identities of one person and return only the personId
 required: false
 schema:
 type: boolean
 - name: reference
 in: query
 description: Limit the query to the reference identity
 required: false
 schema:
 type: boolean
 - name: gallery
 in: query
 description: Limit the query to the records belonging to this gallery
 required: false
 schema:
 type: string
 - name: offset
 in: query
 description: The offset of the query (first item of the response)
 required: false
 schema:
 type: integer
 default: 0
 - name: limit
 in: query
 description: The maximum number of items to return
 required: false
 schema:
 type: integer
 default: 100
 requestBody:
 description: A set of expressions on attributes of the person's identity
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Expressions'
 example:
 - attributeName: firstName
 operator: "="
 value: John
 - attributeName: dateOfBirth
 operator: "<"
 value: "1990-12-31"
 responses:
 '200':
 description: Query successful. If the group parameter was set the identityId is not included in the response.
 content:
 application/json:
 schema:
 type: array
 items:
 type: object
 required:
 - personId
 properties:
 personId:
 type: string
 identityId:
 type: string
 additionalProperties: false
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Query not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{personId}:
 post:
 tags:
 - Person
 summary: Create one person
 operationId: createPerson
 security:
 - BearerAuth: [pr.person.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Person'
 responses:
 '201':
 description: Operation successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Operation not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 get:
 tags:
 - Person
 summary: Read one person
 operationId: readPerson
 security:
 - BearerAuth: [pr.person.read]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '200':
 description: Read successful
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Person'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 put:
 tags:
 - Person
 summary: Update one person
 operationId: updatePerson
 security:
 - BearerAuth: [pr.person.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Person'
 responses:
 '204':
 description: Update successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Update not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 delete:
 tags:
 - Person
 summary: Delete a person and all its identities
 operationId: deletePerson
 security:
 - BearerAuth: [pr.person.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '204':
 description: Delete successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Delete not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{personIdTarget}/merge/{personIdSource}:
 post:
 tags:
 - Person
 summary: Merge two persons
 description: |
 Merge two person records into a single one. Identity ID are preserved and in case of duplicates
 an error is returned and no changes are done.
 If the operation is successful, the person merged is deleted.
 operationId: mergePerson
 security:
 - BearerAuth: [pr.person.write]
 parameters:
 - name: personIdTarget
 in: path
 description: the id of the person receiving new identities
 required: true
 schema:
 type: string
 - name: personIdSource
 in: path
 description: the id of the person giving the identities
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '204':
 description: Merge successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Merge not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{personId}/identities:
 get:
 tags:
 - Identity
 summary: Read all the identities of a person
 operationId: readIdentities
 security:
 - BearerAuth: [pr.identity.read]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '200':
 description: Operation successful
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Identity'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Operation not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 post:
 tags:
 - Identity
 summary: Create one identity and generate its id
 operationId: createIdentity
 security:
 - BearerAuth: [pr.identity.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 allOf:
 - $ref: '#/components/schemas/Identity'
 - type: object
 required:
 - status

 responses:
 '200':
 description: Insertion successful
 content:
 application/json:
 schema:
 type: object
 required:
 - identityId
 properties:
 identityId:
 type: string
 additionalProperties: false
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Insertion not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{personId}/identities/{identityId}:
 post:
 tags:
 - Identity
 summary: Create one identity
 description: |
 Create one new identity for a person. The provided identityId is
 checked for validity and used for the new identity.
 operationId: createIdentityWithId
 security:
 - BearerAuth: [pr.identity.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: identityId
 in: path
 description: the id of the identity
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 allOf:
 - $ref: '#/components/schemas/Identity'
 - type: object
 required:
 - status
 responses:
 '201':
 description: Insertion successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Insertion not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 get:
 tags:
 - Identity
 summary: Read one identity
 operationId: readIdentity
 security:
 - BearerAuth: [pr.identity.read]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: identityId
 in: path
 description: the id of the identity
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '200':
 description: Read successful
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Identity'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 put:
 tags:
 - Identity
 summary: Update one identity
 operationId: updateIdentity
 security:
 - BearerAuth: [pr.identity.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: identityId
 in: path
 description: the id of the identity
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 allOf:
 - $ref: '#/components/schemas/Identity'
 - type: object
 required:
 - status
 responses:
 '204':
 description: Update successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Update not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 patch:
 tags:
 - Identity
 summary: Update partially one identity
 description: Update partially an identity. Payload content is a partial identity object compliant with RFC7396.
 operationId: partialUpdateIdentity
 security:
 - BearerAuth: [pr.identity.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: identityId
 in: path
 description: the id of the identity
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Identity'
 example:
 galleries: [G1, G2]
 biographicData:
 gender: null
 nationality: FRA
 responses:
 '204':
 description: Update successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Update not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 delete:
 tags:
 - Identity
 summary: Delete one identity
 operationId: deleteIdentity
 security:
 - BearerAuth: [pr.identity.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: identityId
 in: path
 description: the id of the identity
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '204':
 description: Delete successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Delete not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{personId}/identities/{identityId}/status:
 put:
 tags:
 - Identity
 summary: Change the status of an identity
 operationId: setIdentityStatus
 security:
 - BearerAuth: [pr.identity.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: identityId
 in: path
 description: the id of the identity
 required: true
 schema:
 type: string
 - name: status
 in: query
 description: The status of the identity
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '204':
 description: Operation successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Operation not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{personId}/identities/{identityId}/reference:
 put:
 tags:
 - Reference
 summary: Define the reference
 operationId: defineReference
 security:
 - BearerAuth: [pr.reference.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: identityId
 in: path
 description: the id of the identity
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '204':
 description: Operation successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Operation not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{personId}/reference:
 get:
 tags:
 - Reference
 summary: Read the reference
 operationId: readReference
 security:
 - BearerAuth: [pr.reference.read]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '200':
 description: Read successful
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Identity'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/galleries:
 get:
 tags:
 - Gallery
 summary: Read the ID of all the galleries
 operationId: readGalleries
 security:
 - BearerAuth: [pr.gallery.read]
 parameters:
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '200':
 description: Operation successful
 content:
 application/json:
 schema:
 type: array
 items:
 type: string
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/galleries/{galleryId}:
 get:
 tags:
 - Gallery
 summary: Read the content of one gallery
 operationId: readGalleryContent
 security:
 - BearerAuth: [pr.gallery.read]
 parameters:
 - name: galleryId
 in: path
 description: the id of the gallery
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: offset
 in: query
 description: The offset of the query (first item of the response)
 required: false
 schema:
 type: integer
 default: 0
 - name: limit
 in: query
 description: The maximum number of items to return
 required: false
 schema:
 type: integer
 default: 1000
 responses:
 '200':
 description: Operation successful
 content:
 application/json:
 schema:
 type: array
 items:
 type: object
 required:
 - personId
 - identityId
 properties:
 personId:
 type: string
 identityId:
 type: string
 additionalProperties: false
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

components:
 securitySchemes:
 BearerAuth:
 type: http
 scheme: bearer
 bearerFormat: JWT
 schemas:
 Error:
 type: object
 required:
 - code
 - message
 properties:
 code:
 description: Error code
 type: integer
 format: int32
 message:
 description: Error message
 type: string
 additionalProperties: false
 Person:
 description: >-
 Person entity.
 type: object
 required:
 - status
 - physicalStatus
 properties:
 personId:
 type: string
 description: The unique id for this person
 status:
 type: string
 enum: [ACTIVE, INACTIVE]
 physicalStatus:
 type: string
 enum: [DEAD, ALIVE]
 additionalProperties: false
 Identity:
 type: object
 properties:
 identityId:
 type: string
 status:
 type: string
 enum: [CLAIMED, VALID, INVALID, REVOKED]
 galleries:
 type: array
 items:
 type: string
 minItems: 1
 uniqueItems: true
 clientData:
 type: string
 format: byte
 contextualData:
 $ref: '#/components/schemas/ContextualData'
 biographicData:
 $ref: '#/components/schemas/BiographicData'
 biometricData:
 type: array
 items:
 $ref: '#/components/schemas/BiometricData'
 documents:
 type: array
 items:
 $ref: '#/components/schemas/Document'
 additionalProperties: false
 ContextualData:
 type: object
 additionalProperties: true
 example:
 enrollmentDate: "2019-01-11"
 BiographicData:
 type: object
 additionalProperties: true
 example:
 firstName: John
 lastName: Doo
 dateOfBirth: "1985-11-30"
 gender: M
 nationality: FRA

 CompressionType:
 type: string
 enum: [NONE, WSQ, JPEG, JPEG2000, PNG]

 DocumentFormatType:
 type: string
 enum: [NONE, JPEG, PNG, PDF]

 Document:
 type: object
 required:
 - documentType
 - parts
 properties:
 documentType:
 type: string
 description: Type of document.
 enum: [ID_CARD, PASSPORT, INVOICE, BIRTH_CERTIFICATE, OTHER]
 documentTypeOther:
 type: string
 description: Details about the type of document when OTHER is used.
 instance:
 type: string
 description: "Used to separate two distincts documents of the same type (ex: two passports)"
 parts:
 type: array
 minItems: 1
 items:
 $ref: '#/components/schemas/DocumentPart'
 additionalProperties: false
 DocumentPart:
 type: object
 properties:
 pages:
 type: array
 description: The pages included in this part. Can be a single page number, or a list.
 minItems: 1
 items:
 type: integer
 data:
 type: string
 format: byte
 description: Base64-encoded data of the document
 dataRef:
 type: string
 format: uri
 description: URI to the data
 example: "http://server.com/buffer?id=00003"
 width:
 type: integer
 description: the width of the image in pixels
 height:
 type: integer
 description: the height of the image in pixels
 format:
 $ref: '#/components/schemas/DocumentFormatType'
 captureDate:
 type: string
 format: date
 example: "2019-05-21"
 captureDevice:
 type: string
 description: A string identifying the device used to capture the document part
 additionalProperties: false
 BiometricData:
 type: object
 required:
 - biometricType
 properties:
 biometricType:
 $ref: '#/components/schemas/BiometricType'
 biometricSubType:
 $ref: '#/components/schemas/BiometricSubType'
 instance:
 type: string
 description: Used to separate two distincts biometric items of the same type and subtype
 image:
 type: string
 format: byte
 description: Base64-encoded image
 imageRef:
 type: string
 format: uri
 description: URI to an image
 example: "http://imageserver.com/image?id=00003"
 captureDate:
 type: string
 format: date
 example: "2019-05-21"
 captureDevice:
 type: string
 description: A string identifying the device used to capture the biometric
 width:
 type: integer
 description: the width of the image
 height:
 type: integer
 description: the height of the image
 bitdepth:
 type: integer
 resolution:
 type: integer
 description: the image resolution (in DPI)
 compression:
 $ref: '#/components/schemas/CompressionType'
 missing:
 description: Optional properties indicating if a part of the biometric data is missing
 type: array
 items:
 $ref: '#/components/schemas/MissingType'
 metadata:
 type: string
 description: An optional string used to convey information vendor-specific
 comment:
 type: string
 description: A comment about the biometric data
 additionalProperties: false
 MissingType:
 type: object
 properties:
 biometricSubType:
 $ref: '#/components/schemas/BiometricSubType'
 presence:
 type: string
 enum: [BANDAGED, AMPUTATED, DAMAGED]
 additionalProperties: false
 BiometricType:
 type: string
 enum:
 - FACE
 - FINGER
 - IRIS
 - SIGNATURE
 - UNKNOWN
 BiometricSubType:
 type: string
 enum:
 - UNKNOWN
 - RIGHT_THUMB
 - RIGHT_INDEX
 - RIGHT_MIDDLE
 - RIGHT_RING
 - RIGHT_LITTLE
 - LEFT_THUMB
 - LEFT_INDEX
 - LEFT_MIDDLE
 - LEFT_RING
 - LEFT_LITTLE
 - PLAIN_RIGHT_FOUR_FINGERS
 - PLAIN_LEFT_FOUR_FINGERS
 - PLAIN_THUMBS

 - UNKNOWN_PALM
 - RIGHT_FULL_PALM
 - RIGHT_WRITERS_PALM
 - LEFT_FULL_PALM
 - LEFT_WRITERS_PALM
 - RIGHT_LOWER_PALM
 - RIGHT_UPPER_PALM
 - LEFT_LOWER_PALM
 - LEFT_UPPER_PALM
 - RIGHT_OTHER
 - LEFT_OTHER
 - RIGHT_INTERDIGITAL
 - RIGHT_THENAR
 - LEFT_INTERDIGITAL
 - LEFT_THENAR
 - LEFT_HYPOTHENAR

 - RIGHT_INDEX_AND_MIDDLE
 - RIGHT_MIDDLE_AND_RING
 - RIGHT_RING_AND_LITTLE
 - LEFT_INDEX_AND_MIDDLE
 - LEFT_MIDDLE_AND_RING
 - LEFT_RING_AND_LITTLE
 - RIGHT_INDEX_AND_LEFT_INDEX
 - RIGHT_INDEX_AND_MIDDLE_AND_RING
 - RIGHT_MIDDLE_AND_RING_AND_LITTLE
 - LEFT_INDEX_AND_MIDDLE_AND_RING
 - LEFT_MIDDLE_AND_RING_AND_LITTLE

 - EYE_UNDEF
 - EYE_RIGHT
 - EYE_LEFT

 - PORTRAIT
 - LEFT_PROFILE
 - RIGHT_PROFILE
 Expression:
 type: object
 required:
 - attributeName
 - operator
 - value
 properties:
 attributeName:
 type: string
 operator:
 type: string
 enum: ['<', '>', '=', '>=', '<=', '!=']
 value:
 oneOf:
 - type: string
 - type: integer
 - type: number
 - type: boolean
 additionalProperties: false
 Expressions:
 type: array
 items:
 $ref: '#/components/schemas/Expression'

Secure Identity Alliance

OSIA, Release 5.0.0

• group (boolean) – Group all matching identities of one person and return only the
personId

• reference (boolean) – Limit the query to the reference identity

• gallery (string) – Limit the query to the records belonging to this gallery

• offset (integer) – The offset of the query (first item of the response)

• limit (integer) – The maximum number of items to return

Status Codes

• 200 OK – Query successful. If the group parameter was set the identityId is not included
in the response.

• 400 Bad Request – Bad request

• 403 Forbidden – Query not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

[
{

"attributeName": "firstName",
"operator": "=",
"value": "John"

},
{

"attributeName": "dateOfBirth",
"operator": "<",
"value": "1990-12-31"

}
]

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"personId": "string",
"identityId": "string"

}
]

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,

(continues on next page)

7.3. Technical Specifications 141

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"message": "string"
}

POST /v1/persons/{personId}
Create one person

Scope required: pr.person.write

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 201 Created – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons/{personId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"personId": "string",
"status": "ACTIVE",
"physicalStatus": "DEAD"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/persons/{personId}
Read one person

Scope required: pr.person.read

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

7.3. Technical Specifications 142

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

Status Codes

• 200 OK – Read successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{personId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"personId": "string",
"status": "ACTIVE",
"physicalStatus": "DEAD"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

PUT /v1/persons/{personId}
Update one person

Scope required: pr.person.write

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Update successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

7.3. Technical Specifications 143

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

Example request:

PUT /v1/persons/{personId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"personId": "string",
"status": "ACTIVE",
"physicalStatus": "DEAD"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

DELETE /v1/persons/{personId}
Delete a person and all its identities

Scope required: pr.person.write

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Delete successful

• 400 Bad Request – Bad request

• 403 Forbidden – Delete not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

7.3. Technical Specifications 144

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/persons/{personIdTarget}/merge/{personIdSource}
Merge two persons

Merge two person records into a single one. Identity ID are preserved and in case of duplicates an error is
returned and no changes are done. If the operation is successful, the person merged is deleted.

Scope required: pr.person.write

Parameters

• personIdTarget (string) – the id of the person receiving new identities

• personIdSource (string) – the id of the person giving the identities

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Merge successful

• 400 Bad Request – Bad request

• 403 Forbidden – Merge not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Identity

GET /v1/persons/{personId}/identities
Read all the identities of a person

Scope required: pr.identity.read

Parameters

• personId (string) – the id of the person

Query Parameters

7.3. Technical Specifications 145

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{personId}/identities?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"identityId": "string",
"status": "CLAIMED",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"enrollmentDate": "2019-01-11"
},
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"documents": [

{
"documentType": "ID_CARD",
"documentTypeOther": "string",
"instance": "string",

(continues on next page)

7.3. Technical Specifications 146

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"parts": [
{

"pages": [
1

],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"format": "NONE",
"captureDate": "2020-12-17",
"captureDevice": "string"

}
]

}
]

}
]

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/persons/{personId}/identities
Create one identity and generate its id

Scope required: pr.identity.write

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Insertion successful

• 400 Bad Request – Bad request

• 403 Forbidden – Insertion not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons/{personId}/identities?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{

(continues on next page)

7.3. Technical Specifications 147

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"identityId": "string",
"status": "CLAIMED",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"enrollmentDate": "2019-01-11"
},
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"documents": [

{
"documentType": "ID_CARD",
"documentTypeOther": "string",
"instance": "string",
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"format": "NONE",
"captureDate": "2020-12-17",
"captureDevice": "string"

}
]

}
]

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"identityId": "string"

}

7.3. Technical Specifications 148

OSIA, Release 5.0.0

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/persons/{personId}/identities/{identityId}
Create one identity

Create one new identity for a person. The provided identityId is checked for validity and used for the new
identity.

Scope required: pr.identity.write

Parameters

• personId (string) – the id of the person

• identityId (string) – the id of the identity

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 201 Created – Insertion successful

• 400 Bad Request – Bad request

• 403 Forbidden – Insertion not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons/{personId}/identities/{identityId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"identityId": "string",
"status": "CLAIMED",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"enrollmentDate": "2019-01-11"
},
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},

(continues on next page)

7.3. Technical Specifications 149

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"biometricData": [
{

"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"documents": [

{
"documentType": "ID_CARD",
"documentTypeOther": "string",
"instance": "string",
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"format": "NONE",
"captureDate": "2020-12-17",
"captureDevice": "string"

}
]

}
]

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/persons/{personId}/identities/{identityId}
Read one identity

7.3. Technical Specifications 150

OSIA, Release 5.0.0

Scope required: pr.identity.read

Parameters

• personId (string) – the id of the person

• identityId (string) – the id of the identity

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Read successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{personId}/identities/{identityId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"identityId": "string",
"status": "CLAIMED",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"enrollmentDate": "2019-01-11"
},
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",

(continues on next page)

7.3. Technical Specifications 151

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"comment": "string"
}

],
"documents": [

{
"documentType": "ID_CARD",
"documentTypeOther": "string",
"instance": "string",
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"format": "NONE",
"captureDate": "2020-12-17",
"captureDevice": "string"

}
]

}
]

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

PUT /v1/persons/{personId}/identities/{identityId}
Update one identity

Scope required: pr.identity.write

Parameters

• personId (string) – the id of the person

• identityId (string) – the id of the identity

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Update successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

7.3. Technical Specifications 152

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

OSIA, Release 5.0.0

• 500 Internal Server Error – Unexpected error

Example request:

PUT /v1/persons/{personId}/identities/{identityId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"identityId": "string",
"status": "CLAIMED",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"enrollmentDate": "2019-01-11"
},
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"documents": [

{
"documentType": "ID_CARD",
"documentTypeOther": "string",
"instance": "string",
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"format": "NONE",
"captureDate": "2020-12-17",
"captureDevice": "string"

}
]

}
]

}

7.3. Technical Specifications 153

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

PATCH /v1/persons/{personId}/identities/{identityId}
Update partially one identity

Update partially an identity. Payload content is a partial identity object compliant with RFC7396.

Scope required: pr.identity.write

Parameters

• personId (string) – the id of the person

• identityId (string) – the id of the identity

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Update successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

PATCH /v1/persons/{personId}/identities/{identityId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"galleries": [

"G1",
"G2"

],
"biographicData": {

"gender": null,
"nationality": "FRA"

}
}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

(continues on next page)

7.3. Technical Specifications 154

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

DELETE /v1/persons/{personId}/identities/{identityId}
Delete one identity

Scope required: pr.identity.write

Parameters

• personId (string) – the id of the person

• identityId (string) – the id of the identity

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Delete successful

• 400 Bad Request – Bad request

• 403 Forbidden – Delete not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

PUT /v1/persons/{personId}/identities/{identityId}/status
Change the status of an identity

Scope required: pr.identity.write

Parameters

• personId (string) – the id of the person

7.3. Technical Specifications 155

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

• identityId (string) – the id of the identity

Query Parameters

• status (string) – The status of the identity (Required)

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Reference

PUT /v1/persons/{personId}/identities/{identityId}/reference
Define the reference

Scope required: pr.reference.write

Parameters

• personId (string) – the id of the person

• identityId (string) – the id of the identity

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example response:

7.3. Technical Specifications 156

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/persons/{personId}/reference
Read the reference

Scope required: pr.reference.read

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Read successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{personId}/reference?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"identityId": "string",
"status": "CLAIMED",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"enrollmentDate": "2019-01-11"
},
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},

(continues on next page)

7.3. Technical Specifications 157

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"biometricData": [
{

"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"documents": [

{
"documentType": "ID_CARD",
"documentTypeOther": "string",
"instance": "string",
"parts": [

{
"pages": [

1
],
"data": "c3RyaW5n",
"dataRef": "https://example.com",
"width": 1,
"height": 1,
"format": "NONE",
"captureDate": "2020-12-17",
"captureDevice": "string"

}
]

}
]

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

7.3. Technical Specifications 158

OSIA, Release 5.0.0

Gallery

GET /v1/galleries
Read the ID of all the galleries

Scope required: pr.gallery.read

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/galleries?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
"string"

]

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/galleries/{galleryId}
Read the content of one gallery

Scope required: pr.gallery.read

Parameters

• galleryId (string) – the id of the gallery

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• offset (integer) – The offset of the query (first item of the response)

7.3. Technical Specifications 159

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

• limit (integer) – The maximum number of items to return

Status Codes

• 200 OK – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/galleries/{galleryId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"personId": "string",
"identityId": "string"

}
]

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Data Model

To be completed

7.3.6 Biometrics

This is version 1.4.0 of this interface.

Get the OpenAPI file:

Biometrics Services

• createEncounterNoIds

7.3. Technical Specifications 160

(c) Secure Identity Alliance

openapi: 3.0.0
info:
 description: |
 The OSIA ABIS Interface.

 Change log:

 - 1.4.0:
 - Add an entity (ExtendablePersonIds) used in the response of create & update operations
 - Make 202 response more standard: returns an object with at least a taskId, additional properties allowed
 - Add an entity (PersonIds) to factorize definition of the pair (personId, encounterId)
 - Allow additional properties in object Candidate.
 - Change path for updateEncounterStatus operation (added /v1)
 - Clarify priority value
 - Add error structure on 400 errors
 - Add signature in biometricType
 - Force additionalProperties to false when extension is not allowed
 - Pagination when accessing gallery content
 - Add fields on BiometricData: instance, metadata, comment, missing
 - 1.3.0:
 - Addition of security
 - 1.2.2:
 - Allow free string for template & quality format
 - Allow additional properties along with the score
 - 1.2.1:
 - Change operation ID
 - 1.2.0:
 - Add service 'merge'
 - Add a status in the encounter entity
 - 1.1.0:
 - Make transactionId mandatory
 - Add 'encounters' in the path to reduce ambiguities
 - Rename operationId to a consistent create/read/update/delete scheme
 - Move gallery in the encounter entity
 - Add ability to return errors in the callback
 - Make the gallery mandatory
 - Rename 'subject' to 'person'
 - Remove array of encounters in request body for insert and update
 - Add service 'readAllEncounters'
 - 1.0.0: Initial version

 version: 1.4.0
 title: OSIA ABIS Interface
 license:
 name: SIA
 url: "https://raw.githubusercontent.com/SecureIdentityAlliance/osia/master/LICENSE"
tags:
 - name: CRUD
 - name: Search
 - name: Gallery
servers:
 - url: https://abis.com/
paths:
 /v1/persons:
 post:
 tags:
 - CRUD
 summary: Create one encounter and generate ID for both the person and the encounter
 operationId: createEncounterNoIds
 security:
 - BearerAuth: [abis.encounter.write]
 parameters:
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 - name: algorithm
 in: query
 description: Hint about the algorithm to be used
 required: false
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Encounter'
 responses:
 '200':
 description: Operation successful
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/ExtendablePersonIds'
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Operation not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 createResponse:
 '${request.query.callback}':
 post:
 summary: Create one encounter and generate both IDs response callback
 operationId: createEncounterNoIdsCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Result of the creation
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/ExtendablePersonIds'
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{personId}/encounters:
 post:
 tags:
 - CRUD
 summary: Create one encounter and generate its ID
 description: |
 Create one encounter in the person identified by his/her id.
 If the person does not yet exist, it is created automatically.
 operationId: createEncounterNoId
 security:
 - BearerAuth: [abis.encounter.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 - name: algorithm
 in: query
 description: Hint about the algorithm to be used
 required: false
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Encounter'
 responses:
 '200':
 description: creation successful
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/ExtendablePersonIds'
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Creation not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 createResponse:
 '${request.query.callback}':
 post:
 summary: Create one encounter and generate its ID response callback
 operationId: createEncounterNoIdCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Result of the creation
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/ExtendablePersonIds'
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 get:
 tags:
 - CRUD
 summary: Read all encounters of one person
 operationId: readAllEncounters
 security:
 - BearerAuth: [abis.encounter.read]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 responses:
 '200':
 description: Read successful
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Encounter'
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 readAllResponse:
 '${request.query.callback}':
 post:
 summary: Read all encounters response callback
 operationId: readAllEncountersCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Encounter data
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Encounter'
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{personId}/encounters/{encounterId}:
 post:
 tags:
 - CRUD
 summary: Create one encounter
 description: |
 Create one encounter in the person identified by his/her id.
 If the person does not yet exist, it is created automatically.

 If the encounter already exists, an error 403 is returned.
 operationId: createEncounter
 security:
 - BearerAuth: [abis.encounter.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: encounterId
 in: path
 description: the id of the encounter
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 - name: algorithm
 in: query
 description: Hint about the algorithm to be used
 required: false
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Encounter'
 responses:
 '200':
 description: Creation successful
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/ExtendablePersonIds'
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Creation not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 createResponse:
 '${request.query.callback}':
 post:
 summary: Create one encounter response callback
 operationId: createEncounterCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Result of the creation
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/ExtendablePersonIds'
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 get:
 tags:
 - CRUD
 summary: Read one encounter
 operationId: readEncounter
 security:
 - BearerAuth: [abis.encounter.read]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: encounterId
 in: path
 description: the id of the encounter
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 responses:
 '200':
 description: Read successful
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Encounter'
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 readResponse:
 '${request.query.callback}':
 post:
 summary: Read one encounter response callback
 operationId: readEncounterCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Encounter data
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Encounter'
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 put:
 tags:
 - CRUD
 summary: Update one encounter
 operationId: updateEncounter
 security:
 - BearerAuth: [abis.encounter.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: encounterId
 in: path
 description: the id of the encounter
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 - name: algorithm
 in: query
 description: Hint about the algorithm to be used
 required: false
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Encounter'
 responses:
 '200':
 description: Operation successful
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/ExtendablePersonIds'
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '204':
 description: Update successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Update not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 updateResponse:
 '${request.query.callback}':
 post:
 summary: Update one encounter response callback
 operationId: updateEncounterCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Result of the update
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/ExtendablePersonIds'
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 delete:
 tags:
 - CRUD
 summary: Delete one encounter
 description: |
 Delete one encounter from the person identified by his/her id.
 If this is the last encounter in the person, the person is also deleted.
 operationId: deleteEncounter
 security:
 - BearerAuth: [abis.encounter.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: encounterId
 in: path
 description: the id of the encounter
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 responses:
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '204':
 description: Delete successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Delete not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 deleteResponse:
 '${request.query.callback}':
 post:
 summary: Delete one encounter response callback
 operationId: deleteEncounterCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Result of the deletion
 content:
 application/json:
 schema:
 type: string
 enum: [OK]
 example: '"OK"'
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{personIdTarget}/merge/{personIdSource}:
 post:
 tags:
 - CRUD
 summary: Merge two sets of encounters
 description: |
 Merge two sets of encounters into a single set. Merging a set of *N* encounters with a set of *M* encounters
 will result in a single set of *N+M* encounters. Encounter ID are preserved and in case of duplicates
 an error is returned and no changes are done.
 operationId: mergeEncounter
 security:
 - BearerAuth: [abis.encounter.write]
 parameters:
 - name: personIdTarget
 in: path
 description: the id of the person receiving new encounters
 required: true
 schema:
 type: string
 - name: personIdSource
 in: path
 description: the id of the person giving the encounters
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 responses:
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '204':
 description: Merge successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Merge not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 mergeResponse:
 '${request.query.callback}':
 post:
 summary: Merge two persons response callback
 operationId: mergeEncounterCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Result of the merge
 content:
 application/json:
 schema:
 type: string
 enum: [OK]
 example: '"OK"'
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{personId}/encounters/{encounterId}/status:
 put:
 tags:
 - CRUD
 summary: Update status of an encounter
 operationId: updateEncounterStatus
 security:
 - BearerAuth: [abis.encounter.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: encounterId
 in: path
 description: the id of the encounter
 required: true
 schema:
 type: string
 - name: status
 in: query
 description: New status of encounter
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 responses:
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '204':
 description: Status has been updated
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Encounter status update not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 updateEncounterStatusResponse:
 '${request.query.callback}':
 post:
 summary: Update encounter status response callback
 operationId: updateEncounterStatusCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Result of the status update
 content:
 application/json:
 schema:
 type: string
 enum: [OK]
 example: '"OK"'
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{personId}/encounters/{encounterId}/templates:
 get:
 tags:
 - CRUD
 summary: Read biometrics templates
 operationId: readTemplate
 security:
 - BearerAuth: [abis.encounter.read]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: encounterId
 in: path
 description: the id of the encounter
 required: true
 schema:
 type: string
 - name: biometricType
 in: query
 description: the type of biometrics to return
 required: false
 schema:
 $ref: '#/components/schemas/BiometricType'
 - name: biometricSubType
 in: query
 description: the sub-type of biometrics to return
 required: false
 schema:
 $ref: '#/components/schemas/BiometricSubType'
 - name: instance
 in: query
 description: Used to separate two distincts biometric items of the same type and subtype
 required: false
 schema:
 type: string
 - name: templateFormat
 in: query
 description: the format of the template to return
 required: false
 schema:
 $ref: '#/components/schemas/TemplateFormat'
 - name: qualityFormat
 in: query
 description: the format of the quality to return
 required: false
 schema:
 $ref: '#/components/schemas/QualityFormat'
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 responses:
 '200':
 description: Operation successful
 content:
 application/json:
 schema:
 description: |
 An array of computed data (template & quality) found in the system.
 If a record exists but has no computed value, nothing is returned.
 An empty array is possible if the biometrics exist but have not been encoded and analyzed.
 type: array
 items:
 $ref: '#/components/schemas/BiometricComputedData'
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '404':
 description: Unknown record or unkown biometrics
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 readTemplateResponse:
 '${request.query.callback}':
 post:
 summary: Read biometrics templates response callback
 operationId: readTemplateCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Biometric computed data
 content:
 application/json:
 schema:
 description: |
 An array of computed data (template & quality) found in the system.
 If a record exists but has no computed value, nothing is returned.
 An empty array is possible if the biometrics exist but have not been encoded and analyzed.
 type: array
 items:
 $ref: '#/components/schemas/BiometricComputedData'
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/persons/{personId}:
 delete:
 tags:
 - CRUD
 summary: Delete a person and all its encounters
 operationId: deleteAll
 security:
 - BearerAuth: [abis.encounter.write]
 parameters:
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 responses:
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '204':
 description: Delete successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Delete not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 deleteResponse:
 '${request.query.callback}':
 post:
 summary: Delete a person response callback
 operationId: deleteAllCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Result of the deletion
 content:
 application/json:
 schema:
 type: string
 enum: [OK]
 example: '"OK"'
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/identify/{galleryId}:
 post:
 tags:
 - Search
 summary: Biometric identification
 description: Identification based on biometric data from one gallery
 operationId: identify
 security:
 - BearerAuth: [abis.identify]
 parameters:
 - name: galleryId
 in: path
 description: the id of the gallery
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 - name: maxNbCand
 in: query
 description: the maximum number of candidates
 required: false
 schema:
 type: integer
 - name: threshold
 in: query
 description: the algorithm threshold
 required: false
 schema:
 type: number
 - name: accuracyLevel
 in: query
 description: the accuracy level expected for this request
 required: false
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 type: object
 required:
 - filter
 - biometricData
 properties:
 filter:
 $ref: '#/components/schemas/Filter'
 biometricData:
 type: array
 items:
 $ref: '#/components/schemas/BiometricData'
 additionalProperties: false
 responses:
 '200':
 description: Request executed. Identification result is returned.
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Candidate'
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Identification not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 identifyResponse:
 '${request.query.callback}':
 post:
 summary: Biometric identification response callback
 operationId: identifyCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Result of the identification (list of candidate)
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Candidate'
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/identify/{galleryId}/{personId}:
 post:
 tags:
 - Search
 summary: Biometric identification based on existing data
 description: Identification based on existing data from one gallery
 operationId: identifyFromId
 security:
 - BearerAuth: [abis.identify]
 parameters:
 - name: galleryId
 in: path
 description: the id of the gallery
 required: true
 schema:
 type: string
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 - name: maxNbCand
 in: query
 description: the maximum number of candidates
 required: false
 schema:
 type: integer
 - name: threshold
 in: query
 description: the algorithm threshold
 required: false
 schema:
 type: number
 - name: accuracyLevel
 in: query
 description: the accuracy level expected for this request
 required: false
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Filter'
 responses:
 '200':
 description: Request executed. Identification result is returned.
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Candidate'
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Identification not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 identifyResponse:
 '${request.query.callback}':
 post:
 summary: Biometric identification based on existing data response callback
 operationId: identifyFromIdCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Result of the identification (list of candidate)
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Candidate'
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/verify/{galleryId}/{personId}:
 post:
 tags:
 - Search
 summary: Biometric verification
 description: Verification of one set of biometric data and a record in the system
 operationId: verifyFromId
 security:
 - BearerAuth: [abis.verify]
 parameters:
 - name: galleryId
 in: path
 description: the id of the gallery
 required: true
 schema:
 type: string
 - name: personId
 in: path
 description: the id of the person
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 - name: threshold
 in: query
 description: the algorithm threshold
 required: false
 schema:
 type: number
 - name: accuracyLevel
 in: query
 description: the accuracy level expected for this request
 required: false
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 type: object
 required:
 - biometricData
 properties:
 biometricData:
 type: array
 items:
 $ref: '#/components/schemas/BiometricData'
 additionalProperties: false
 responses:
 '200':
 description: Verification execution successful
 content:
 application/json:
 schema:
 type: object
 required:
 - decision
 properties:
 decision:
 type: boolean
 scores:
 type: array
 items:
 $ref: '#/components/schemas/ScoreDetail'
 additionalProperties: false
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '404':
 description: Unknown record
 '403':
 description: Verification not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 verifyResponse:
 '${request.query.callback}':
 post:
 summary: Biometric verification response callback
 operationId: verifyFromIdCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Result of the verification
 content:
 application/json:
 schema:
 type: object
 required:
 - decision
 properties:
 decision:
 type: boolean
 scores:
 type: array
 items:
 $ref: '#/components/schemas/ScoreDetail'
 additionalProperties: false
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/verify:
 post:
 tags:
 - Search
 summary: Biometric verification with two sets of data
 description: Verification of two sets of biometric data
 operationId: verifyFromBio
 security:
 - BearerAuth: [abis.verify]
 parameters:
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 - name: threshold
 in: query
 description: the algorithm threshold
 required: false
 schema:
 type: number
 - name: accuracyLevel
 in: query
 description: the accuracy level expected for this request
 required: false
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 type: object
 required:
 - biometricData1
 - biometricData2
 properties:
 biometricData1:
 type: array
 items:
 $ref: '#/components/schemas/BiometricData'
 biometricData2:
 type: array
 items:
 $ref: '#/components/schemas/BiometricData'
 additionalProperties: false
 responses:
 '200':
 description: Verification execution successful
 content:
 application/json:
 schema:
 type: object
 required:
 - decision
 properties:
 decision:
 type: boolean
 scores:
 type: array
 items:
 $ref: '#/components/schemas/ScoreDetail'
 additionalProperties: false
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Verification not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 verifyResponse:
 '${request.query.callback}':
 post:
 summary: Biometric verification with two sets of data response callback
 operationId: verifyFromBioCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: Result of the verification
 content:
 application/json:
 schema:
 type: object
 required:
 - decision
 properties:
 decision:
 type: boolean
 scores:
 type: array
 items:
 $ref: '#/components/schemas/ScoreDetail'
 additionalProperties: false
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/galleries:
 get:
 tags:
 - Gallery
 summary: Read the ID of all the galleries
 operationId: readGalleries
 security:
 - BearerAuth: [abis.gallery.read]
 parameters:
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 responses:
 '200':
 description: Operation successful
 content:
 application/json:
 schema:
 type: array
 items:
 type: string
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 readGalleriesResponse:
 '${request.query.callback}':
 post:
 summary: Read the ID of all the galleries response callback
 operationId: readGalleriesCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: List of gallery IDs
 content:
 application/json:
 schema:
 type: array
 items:
 type: string
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/galleries/{galleryId}:
 get:
 tags:
 - Gallery
 summary: Read the content of one gallery
 operationId: readGalleryContent
 security:
 - BearerAuth: [abis.gallery.read]
 parameters:
 - name: galleryId
 in: path
 description: the id of the gallery
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 - name: callback
 in: query
 description: the callback address, where the result will be sent when available
 required: false
 schema:
 type: string
 format: uri
 example: "http://client.com/callback"
 - name: priority
 in: query
 description: "the request priority (0: lowest priority; 9: highest priority)"
 required: false
 schema:
 type: integer
 - name: offset
 in: query
 description: The offset of the query (first item of the response)
 required: false
 schema:
 type: integer
 default: 0
 - name: limit
 in: query
 description: The maximum number of items to return
 required: false
 schema:
 type: integer
 default: 1000
 responses:
 '200':
 description: Operation successful
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/PersonIds'
 '202':
 description: |
 Request received successfully and correct, result will be returned through the callback.
 An internal task ID is returned.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 callbacks:
 readGalleryContentResponse:
 '${request.query.callback}':
 post:
 summary: Read the content of one gallery response callback
 operationId: readGalleryContentCB
 parameters:
 # query parameters
 - name: transactionId
 in: query
 required: true
 description: The id of the transaction
 schema:
 type: string
 requestBody:
 required: true
 description: List of encounters IDs
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/PersonIds'
 application/error+json:
 schema:
 $ref: '#/components/schemas/Error'
 responses:
 '204':
 description: Response is received and accepted.
 '403':
 description: Forbidden access to the service
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

components:
 securitySchemes:
 BearerAuth:
 type: http
 scheme: bearer
 bearerFormat: JWT
 schemas:
 Error:
 type: object
 required:
 - code
 - message
 properties:
 code:
 description: Error code
 type: integer
 format: int32
 message:
 description: Error message
 type: string
 additionalProperties: false
 Encounter:
 type: object
 required:
 - status
 - encounterType
 - biometricData
 properties:
 encounterId:
 type: string
 status:
 type: string
 enum: [ACTIVE, INACTIVE]
 encounterType:
 type: string
 description: Type of the encounter
 galleries:
 type: array
 items:
 type: string
 minItems: 1
 uniqueItems: true
 clientData:
 type: string
 format: byte
 contextualData:
 $ref: '#/components/schemas/ContextualData'
 biographicData:
 $ref: '#/components/schemas/BiographicData'
 biometricData:
 type: array
 items:
 $ref: '#/components/schemas/BiometricData'
 additionalProperties: false
 ContextualData:
 type: object
 additionalProperties: true
 example:
 date: "2019-01-11"
 BiographicData:
 type: object
 additionalProperties: true
 example:
 dateOfBirth: "1985-11-30"
 gender: M
 nationality: FRA
 BiometricData:
 type: object
 required:
 - biometricType
 properties:
 biometricType:
 $ref: '#/components/schemas/BiometricType'
 biometricSubType:
 $ref: '#/components/schemas/BiometricSubType'
 instance:
 type: string
 description: Used to separate two distincts biometric items of the same type and subtype
 image:
 type: string
 format: byte
 description: Base64-encoded image
 imageRef:
 type: string
 format: uri
 description: URI to an image
 example: "http://imageserver.com/image?id=00003"
 captureDate:
 type: string
 format: date
 example: "2019-05-21"
 captureDevice:
 type: string
 description: A string identifying the device used to capture the biometric
 impressionType:
 $ref: '#/components/schemas/ImpressionType'
 width:
 type: integer
 description: the width of the image
 height:
 type: integer
 description: the height of the image
 bitdepth:
 type: integer
 resolution:
 type: integer
 description: the image resolution (in DPI)
 compression:
 $ref: '#/components/schemas/CompressionType'
 missing:
 description: Optional properties indicating if a part of the biometric data is missing
 type: array
 items:
 $ref: '#/components/schemas/MissingType'
 metadata:
 type: string
 description: An optional string used to convey information vendor-specific
 comment:
 type: string
 description: A comment about the biometric data
 additionalProperties: false
 MissingType:
 type: object
 properties:
 biometricSubType:
 $ref: '#/components/schemas/BiometricSubType'
 presence:
 type: string
 enum: [BANDAGED, AMPUTATED, DAMAGED]
 additionalProperties: false
 BiometricComputedData:
 type: object
 required:
 - biometricType
 - template
 properties:
 biometricType:
 $ref: '#/components/schemas/BiometricType'
 biometricSubType:
 $ref: '#/components/schemas/BiometricSubType'
 instance:
 type: string
 description: Used to separate two distincts biometric items of the same type and subtype
 template:
 type: string
 format: byte
 description: Base64-encoded template
 templateFormat:
 $ref: '#/components/schemas/TemplateFormat'
 quality:
 type: integer
 format: int64
 description: Quality, as a number, of the biometric
 qualityFormat:
 $ref: '#/components/schemas/QualityFormat'
 vendor:
 type: string
 algorithm:
 type: string
 additionalProperties: false
 TemplateFormat:
 type: string
 description: |
 Format of the template.
 One of ISO_19794_2, ISO_19794_2_NS, ISO_19794_2_CS, ISO_19794_2_2011, ANSI_378_2009 or ANSI_378.
 Can be extended to include additional proprietary template format
 QualityFormat:
 type: string
 description: |
 Format of the quality.
 One of ISO_19794, NFIQ, or NFIQ2.
 Can be extended to include additional proprietary quality format
 CompressionType:
 type: string
 enum: [NONE, WSQ, JPEG, JPEG2000, PNG]
 ImpressionType:
 type: string
 enum:
 - LIVE_SCAN_PLAIN
 - LIVE_SCAN_ROLLED
 - NONLIVE_SCAN_PLAIN
 - NONLIVE_SCAN_ROLLED
 - LATENT_IMPRESSION
 - LATENT_TRACING
 - LATENT_PHOTO
 - LATENT_LIFT
 - LIVE_SCAN_SWIPE
 - LIVE_SCAN_VERTICAL_ROLL
 - LIVE_SCAN_PALM
 - NONLIVE_SCAN_PALM
 - LATENT_PALM_IMPRESSION
 - LATENT_PALM_TRACING
 - LATENT_PALM_PHOTO
 - LATENT_PALM_LIFT
 - LIVE_SCAN_OPTICAL_CONTACTLESS_PLAIN
 - OTHER
 - UNKNOWN
 BiometricType:
 type: string
 enum:
 - FACE
 - FINGER
 - IRIS
 - SIGNATURE
 - UNKNOWN
 BiometricSubType:
 type: string
 enum:
 - UNKNOWN
 - RIGHT_THUMB
 - RIGHT_INDEX
 - RIGHT_MIDDLE
 - RIGHT_RING
 - RIGHT_LITTLE
 - LEFT_THUMB
 - LEFT_INDEX
 - LEFT_MIDDLE
 - LEFT_RING
 - LEFT_LITTLE
 - PLAIN_RIGHT_FOUR_FINGERS
 - PLAIN_LEFT_FOUR_FINGERS
 - PLAIN_THUMBS

 - UNKNOWN_PALM
 - RIGHT_FULL_PALM
 - RIGHT_WRITERS_PALM
 - LEFT_FULL_PALM
 - LEFT_WRITERS_PALM
 - RIGHT_LOWER_PALM
 - RIGHT_UPPER_PALM
 - LEFT_LOWER_PALM
 - LEFT_UPPER_PALM
 - RIGHT_OTHER
 - LEFT_OTHER
 - RIGHT_INTERDIGITAL
 - RIGHT_THENAR
 - LEFT_INTERDIGITAL
 - LEFT_THENAR
 - LEFT_HYPOTHENAR

 - RIGHT_INDEX_AND_MIDDLE
 - RIGHT_MIDDLE_AND_RING
 - RIGHT_RING_AND_LITTLE
 - LEFT_INDEX_AND_MIDDLE
 - LEFT_MIDDLE_AND_RING
 - LEFT_RING_AND_LITTLE
 - RIGHT_INDEX_AND_LEFT_INDEX
 - RIGHT_INDEX_AND_MIDDLE_AND_RING
 - RIGHT_MIDDLE_AND_RING_AND_LITTLE
 - LEFT_INDEX_AND_MIDDLE_AND_RING
 - LEFT_MIDDLE_AND_RING_AND_LITTLE

 - EYE_UNDEF
 - EYE_RIGHT
 - EYE_LEFT

 - PORTRAIT
 - LEFT_PROFILE
 - RIGHT_PROFILE
 Filter:
 type: object
 additionalProperties: true
 example:
 dateOfBirthMin: "1980-01-01"
 dateOfBirthMax: "2019-12-31"
 Candidate:
 type: object
 description: |
 Identification of a candidate result of a biometric search.

 This structure can be extended by vendors able to include additional information
 to the three mandatory properties.
 required:
 - personId
 - rank
 - score
 properties:
 personId:
 type: string
 description: the identifier of the person
 rank:
 type: integer
 format: int32
 description: >-
 the rank of the candidate in relation to other candidates for the
 same biometric identification operation
 score:
 type: number
 format: float
 description: >-
 the score of the candidate in relation to other candidates for
 the same biometric identification operation
 scoreList:
 type: array
 description: >-
 a list of comparison score(s) and optionally the type and subtype of
 the relating biometric
 items:
 $ref: '#/components/schemas/ScoreDetail'
 additionalProperties: true
 ScoreDetail:
 description: |
 Scoring information calculated after a biometric search.
 It includes at least the score (a float) and optionnally the encounterId,
 type and subtype of the matching bometric item.
 It can also be extended with proprietary information to better describe
 the matching result (for instance: rotation needed to align
 the probe and the candidate)
 type: object
 required:
 - score
 properties:
 score:
 type: number
 format: float
 description: the score
 encounterId:
 type: string
 biometricType:
 $ref: '#/components/schemas/BiometricType'
 biometricSubType:
 $ref: '#/components/schemas/BiometricSubType'
 instance:
 type: string
 description: Used to separate two distincts biometric items of the same type and subtype
 additionalProperties: true
 PersonIds:
 type: object
 required:
 - personId
 - encounterId
 properties:
 personId:
 type: string
 encounterId:
 type: string
 additionalProperties: false
 ExtendablePersonIds:
 description: |
 The IDs of a record (personId and encounterId) extendable with additional
 properties if needed by an implementation.

 This is used for the response of insert & update operations, when additional
 properties (such as: quality evaluation, proof of record, etc.) might be returned
 by the server.
 required:
 - personId
 - encounterId
 properties:
 personId:
 type: string
 encounterId:
 type: string
 additionalProperties: true
 TaskId:
 description: |
 Information about the asynchronous task. Only the taskId is mandatory but
 the implementation is free to return additional details such as: expected
 duration, URL to monitor the task, etc.
 type: object
 required:
 - taskId
 properties:
 taskId:
 type: string
 example: '"123e4567-e89b-12d3-a456-426655440000"'
 additionalProperties: true

Secure Identity Alliance

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

• createEncounterNoId
• readAllEncounters
• createEncounter
• readEncounter
• updateEncounter
• deleteEncounter
• mergeEncounter
• updateEncounterStatus
• readTemplate
• deleteAll
• identify
• identifyFromId
• verifyFromId
• verifyFromBio
• readGalleries
• readGalleryContent

Services

CRUD

POST /v1/persons
Create one encounter and generate ID for both the person and the encounter

Scope required: abis.encounter.write

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

• algorithm (string) – Hint about the algorithm to be used

Status Codes

• 200 OK – Operation successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"encounterId": "string",
"status": "ACTIVE",
"encounterType": "string",
"galleries": [

"string"
],

(continues on next page)

7.3. Technical Specifications 161

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
]

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"personId": "string",
"encounterId": "string"

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

(continues on next page)

7.3. Technical Specifications 162

OSIA, Release 5.0.0

(continued from previous page)

{
"code": 1,
"message": "string"

}

Callback: createResponse

POST ${request.query.callback}
Create one encounter and generate both IDs response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"personId": "string",
"encounterId": "string"

}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/persons/{personId}/encounters
Create one encounter and generate its ID

Create one encounter in the person identified by his/her id. If the person does not yet exist, it is created
automatically.

Scope required: abis.encounter.write

Parameters

• personId (string) – the id of the person

Query Parameters

7.3. Technical Specifications 163

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

• algorithm (string) – Hint about the algorithm to be used

Status Codes

• 200 OK – creation successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 400 Bad Request – Bad request

• 403 Forbidden – Creation not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons/{personId}/encounters?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"encounterId": "string",
"status": "ACTIVE",
"encounterType": "string",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
]

}

Example response:

7.3. Technical Specifications 164

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

HTTP/1.1 200 OK
Content-Type: application/json

{
"personId": "string",
"encounterId": "string"

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: createResponse

POST ${request.query.callback}
Create one encounter and generate its ID response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"personId": "string",
"encounterId": "string"

}

Example request:

7.3. Technical Specifications 165

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/persons/{personId}/encounters
Read all encounters of one person

Scope required: abis.encounter.read

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

Status Codes

• 200 OK – Read successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{personId}/encounters?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"encounterId": "string",
"status": "ACTIVE",
"encounterType": "string",
"galleries": [

"string"

(continues on next page)

7.3. Technical Specifications 166

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

],
"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
]

}
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: readAllResponse

7.3. Technical Specifications 167

OSIA, Release 5.0.0

POST ${request.query.callback}
Read all encounters response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
{

"encounterId": "string",
"status": "ACTIVE",
"encounterType": "string",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
]

}
]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

(continues on next page)

7.3. Technical Specifications 168

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/persons/{personId}/encounters/{encounterId}
Create one encounter

Create one encounter in the person identified by his/her id. If the person does not yet exist, it is created
automatically.

If the encounter already exists, an error 403 is returned.

Scope required: abis.encounter.write

Parameters

• personId (string) – the id of the person

• encounterId (string) – the id of the encounter

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

• algorithm (string) – Hint about the algorithm to be used

Status Codes

• 200 OK – Creation successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 400 Bad Request – Bad request

• 403 Forbidden – Creation not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/persons/{personId}/encounters/{encounterId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"encounterId": "string",
"status": "ACTIVE",
"encounterType": "string",
"galleries": [

"string"
],

(continues on next page)

7.3. Technical Specifications 169

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
]

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"personId": "string",
"encounterId": "string"

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

(continues on next page)

7.3. Technical Specifications 170

OSIA, Release 5.0.0

(continued from previous page)

{
"code": 1,
"message": "string"

}

Callback: createResponse

POST ${request.query.callback}
Create one encounter response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"personId": "string",
"encounterId": "string"

}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/persons/{personId}/encounters/{encounterId}
Read one encounter

Scope required: abis.encounter.read

Parameters

• personId (string) – the id of the person

• encounterId (string) – the id of the encounter

Query Parameters

7.3. Technical Specifications 171

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

Status Codes

• 200 OK – Read successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{personId}/encounters/{encounterId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"encounterId": "string",
"status": "ACTIVE",
"encounterType": "string",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

(continues on next page)

7.3. Technical Specifications 172

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

}
]

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: readResponse

POST ${request.query.callback}
Read one encounter response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"encounterId": "string",
"status": "ACTIVE",
"encounterType": "string",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

(continues on next page)

7.3. Technical Specifications 173

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
]

}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

PUT /v1/persons/{personId}/encounters/{encounterId}
Update one encounter

Scope required: abis.encounter.write

Parameters

• personId (string) – the id of the person

• encounterId (string) – the id of the encounter

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

7.3. Technical Specifications 174

OSIA, Release 5.0.0

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

• algorithm (string) – Hint about the algorithm to be used

Status Codes

• 200 OK – Operation successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 204 No Content – Update successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

PUT /v1/persons/{personId}/encounters/{encounterId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"encounterId": "string",
"status": "ACTIVE",
"encounterType": "string",
"galleries": [

"string"
],
"clientData": "c3RyaW5n",
"contextualData": {

"date": "2019-01-11"
},
"biographicData": {

"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
]

}

Example response:

7.3. Technical Specifications 175

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

HTTP/1.1 200 OK
Content-Type: application/json

{
"personId": "string",
"encounterId": "string"

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: updateResponse

POST ${request.query.callback}
Update one encounter response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"personId": "string",
"encounterId": "string"

}

Example request:

7.3. Technical Specifications 176

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

DELETE /v1/persons/{personId}/encounters/{encounterId}
Delete one encounter

Delete one encounter from the person identified by his/her id. If this is the last encounter in the person, the
person is also deleted.

Scope required: abis.encounter.write

Parameters

• personId (string) – the id of the person

• encounterId (string) – the id of the encounter

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

Status Codes

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 204 No Content – Delete successful

• 400 Bad Request – Bad request

• 403 Forbidden – Delete not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

7.3. Technical Specifications 177

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: deleteResponse

POST ${request.query.callback}
Delete one encounter response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/persons/{personIdTarget}/merge/{personIdSource}
Merge two sets of encounters

7.3. Technical Specifications 178

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

Merge two sets of encounters into a single set. Merging a set of N encounters with a set of M encounters
will result in a single set of N+M encounters. Encounter ID are preserved and in case of duplicates an error
is returned and no changes are done.

Scope required: abis.encounter.write

Parameters

• personIdTarget (string) – the id of the person receiving new encounters

• personIdSource (string) – the id of the person giving the encounters

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

Status Codes

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 204 No Content – Merge successful

• 400 Bad Request – Bad request

• 403 Forbidden – Merge not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: mergeResponse

POST ${request.query.callback}
Merge two persons response callback

Query Parameters

7.3. Technical Specifications 179

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

PUT /v1/persons/{personId}/encounters/{encounterId}/status
Update status of an encounter

Scope required: abis.encounter.write

Parameters

• personId (string) – the id of the person

• encounterId (string) – the id of the encounter

Query Parameters

• status (string) – New status of encounter (Required)

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

Status Codes

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 204 No Content – Status has been updated

• 400 Bad Request – Bad request

• 403 Forbidden – Encounter status update not allowed

• 500 Internal Server Error – Unexpected error

7.3. Technical Specifications 180

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: updateEncounterStatusResponse

POST ${request.query.callback}
Update encounter status response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

7.3. Technical Specifications 181

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/persons/{personId}/encounters/{encounterId}/templates
Read biometrics templates

Scope required: abis.encounter.read

Parameters

• personId (string) – the id of the person

• encounterId (string) – the id of the encounter

Query Parameters

• biometricType (string) – the type of biometrics to return

• biometricSubType (string) – the sub-type of biometrics to return

• instance (string) – Used to separate two distincts biometric items of the same
type and subtype

• templateFormat (string) – the format of the template to return

• qualityFormat (string) – the format of the quality to return

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

Status Codes

• 200 OK – Operation successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record or unkown biometrics

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/persons/{personId}/encounters/{encounterId}/templates?transactionId=string HTTP/
→˓1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"biometricType": "FACE",
"biometricSubType": "UNKNOWN",

(continues on next page)

7.3. Technical Specifications 182

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"instance": "string",
"template": "c3RyaW5n",
"templateFormat": "string",
"quality": 1,
"qualityFormat": "string",
"vendor": "string",
"algorithm": "string"

}
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: readTemplateResponse

POST ${request.query.callback}
Read biometrics templates response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
{

"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"template": "c3RyaW5n",

(continues on next page)

7.3. Technical Specifications 183

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"templateFormat": "string",
"quality": 1,
"qualityFormat": "string",
"vendor": "string",
"algorithm": "string"

}
]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

DELETE /v1/persons/{personId}
Delete a person and all its encounters

Scope required: abis.encounter.write

Parameters

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

Status Codes

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 204 No Content – Delete successful

• 400 Bad Request – Bad request

• 403 Forbidden – Delete not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{

(continues on next page)

7.3. Technical Specifications 184

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"taskId": "string"
}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: deleteResponse

POST ${request.query.callback}
Delete a person response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

"OK"

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

7.3. Technical Specifications 185

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

Search

POST /v1/identify/{galleryId}
Biometric identification

Identification based on biometric data from one gallery

Scope required: abis.identify

Parameters

• galleryId (string) – the id of the gallery

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

• maxNbCand (integer) – the maximum number of candidates

• threshold (number) – the algorithm threshold

• accuracyLevel (string) – the accuracy level expected for this request

Status Codes

• 200 OK – Request executed. Identification result is returned.

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 400 Bad Request – Bad request

• 403 Forbidden – Identification not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/identify/{galleryId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"filter": {

"dateOfBirthMin": "1980-01-01",
"dateOfBirthMax": "2019-12-31"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

(continues on next page)

7.3. Technical Specifications 186

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
]

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"personId": "string",
"rank": 1,
"score": 1.0,
"scoreList": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string"

}
]

}
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: identifyResponse

POST ${request.query.callback}
Biometric identification response callback

Query Parameters

7.3. Technical Specifications 187

OSIA, Release 5.0.0

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
{

"personId": "string",
"rank": 1,
"score": 1.0,
"scoreList": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string"

}
]

}
]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/identify/{galleryId}/{personId}
Biometric identification based on existing data

Identification based on existing data from one gallery

Scope required: abis.identify

Parameters

• galleryId (string) – the id of the gallery

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

7.3. Technical Specifications 188

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

• maxNbCand (integer) – the maximum number of candidates

• threshold (number) – the algorithm threshold

• accuracyLevel (string) – the accuracy level expected for this request

Status Codes

• 200 OK – Request executed. Identification result is returned.

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 400 Bad Request – Bad request

• 403 Forbidden – Identification not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/identify/{galleryId}/{personId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"dateOfBirthMin": "1980-01-01",
"dateOfBirthMax": "2019-12-31"

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"personId": "string",
"rank": 1,
"score": 1.0,
"scoreList": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string"

}
]

}
]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

7.3. Technical Specifications 189

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: identifyResponse

POST ${request.query.callback}
Biometric identification based on existing data response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
{

"personId": "string",
"rank": 1,
"score": 1.0,
"scoreList": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string"

}
]

}
]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

7.3. Technical Specifications 190

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/verify/{galleryId}/{personId}
Biometric verification

Verification of one set of biometric data and a record in the system

Scope required: abis.verify

Parameters

• galleryId (string) – the id of the gallery

• personId (string) – the id of the person

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

• threshold (number) – the algorithm threshold

• accuracyLevel (string) – the accuracy level expected for this request

Status Codes

• 200 OK – Verification execution successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 400 Bad Request – Bad request

• 404 Not Found – Unknown record

• 403 Forbidden – Verification not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/verify/{galleryId}/{personId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,

(continues on next page)

7.3. Technical Specifications 191

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
]

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"decision": true,
"scores": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string"

}
]

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: verifyResponse

POST ${request.query.callback}
Biometric verification response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

7.3. Technical Specifications 192

OSIA, Release 5.0.0

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{
"decision": true,
"scores": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string"

}
]

}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/verify
Biometric verification with two sets of data

Verification of two sets of biometric data

Scope required: abis.verify

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

• threshold (number) – the algorithm threshold

• accuracyLevel (string) – the accuracy level expected for this request

Status Codes

• 200 OK – Verification execution successful

7.3. Technical Specifications 193

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

OSIA, Release 5.0.0

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 400 Bad Request – Bad request

• 403 Forbidden – Verification not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/verify?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"biometricData1": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"biometricData2": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"impressionType": "LIVE_SCAN_PLAIN",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
]

}

Example response:

7.3. Technical Specifications 194

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

HTTP/1.1 200 OK
Content-Type: application/json

{
"decision": true,
"scores": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string"

}
]

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: verifyResponse

POST ${request.query.callback}
Biometric verification with two sets of data response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

{

(continues on next page)

7.3. Technical Specifications 195

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"decision": true,
"scores": [

{
"score": 1.0,
"encounterId": "string",
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string"

}
]

}

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Gallery

GET /v1/galleries
Read the ID of all the galleries

Scope required: abis.gallery.read

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

Status Codes

• 200 OK – Operation successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/galleries?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

7.3. Technical Specifications 196

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
"string"

]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: readGalleriesResponse

POST ${request.query.callback}
Read the ID of all the galleries response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
"string"

]

Example request:

7.3. Technical Specifications 197

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/galleries/{galleryId}
Read the content of one gallery

Scope required: abis.gallery.read

Parameters

• galleryId (string) – the id of the gallery

Query Parameters

• transactionId (string) – The id of the transaction (Required)

• callback (string) – the callback address, where the result will be sent when avail-
able

• priority (integer) – the request priority (0: lowest priority; 9: highest priority)

• offset (integer) – The offset of the query (first item of the response)

• limit (integer) – The maximum number of items to return

Status Codes

• 200 OK – Operation successful

• 202 Accepted – Request received successfully and correct, result will be returned
through the callback. An internal task ID is returned.

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/galleries/{galleryId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"personId": "string",

(continues on next page)

7.3. Technical Specifications 198

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"encounterId": "string"
}

]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Callback: readGalleryContentResponse

POST ${request.query.callback}
Read the content of one gallery response callback

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Response is received and accepted.

• 403 Forbidden – Forbidden access to the service

• 500 Internal Server Error – Unexpected error

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json

[
{

"personId": "string",
"encounterId": "string"

}
]

Example request:

POST ${request.query.callback}?transactionId=string HTTP/1.1
Host: example.com

(continues on next page)

7.3. Technical Specifications 199

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

Content-Type: application/error+json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Data Model

To be completed

7.3.7 Credential Services

This is version 1.1.0 of this interface.

Get the OpenAPI file:

Credential Services

• createCredentialRequest
• readCredentialRequest
• updateCredentialRequest
• deleteCredentialRequest
• findCredentials
• readCredential
• suspendCredential
• unsuspendCredential
• revokeCredential
• setCredentialStatus
• findCredentialProfiles

Services

Credential Request

POST /v1/credentialRequests/{credentialRequestId}
Create a request for a credential

Scope required: cms.request.write

Parameters

• credentialRequestId (string) – the id of the credential request

Query Parameters

• transactionId (string) – The id of the transaction (Required)

7.3. Technical Specifications 200

(c) Secure Identity Alliance

openapi: 3.0.0
info:
 description: |
 The OSIA Credential Management System Interface.

 Change log:

 - 1.1.0:
 - Add error structure on 400 errors
 - Add signature in biometricType
 - Force additionalProperties to false when extension is not allowed
 - Add fields on BiometricData: instance, metadata, comment, missing, template (needed when inserted in the credential)
 - Add a requestData entity to group the request of data
 - Extend the allowed values for the status
 - Add a service to change the status
 - 1.0.0: Initial version

 version: 1.1.0
 title: OSIA Credential Management System Interface
 license:
 name: SIA
 url: "https://raw.githubusercontent.com/SecureIdentityAlliance/osia/master/LICENSE"
tags:
 - name: Credential Request
 - name: Credential
 - name: Credential Profile
servers:
 - url: http://cms.com/
 - url: https://cms.com/
paths:

 /v1/credentialRequests/{credentialRequestId}:
 post:
 tags:
 - Credential Request
 summary: Create a request for a credential
 operationId: createCredentialRequest
 security:
 - BearerAuth: [cms.request.write]
 parameters:
 - name: credentialRequestId
 in: path
 description: the id of the credential request
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/CredentialRequest'
 responses:
 '201':
 description: Operation successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Operation not allowed
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 get:
 tags:
 - Credential Request
 summary: Read a credential request
 operationId: readCredentialRequest
 security:
 - BearerAuth: [cms.request.read]
 parameters:
 - name: credentialRequestId
 in: path
 description: the id of the credential request
 required: true
 schema:
 type: string
 - name: attributes
 in: query
 description: The (optional) set of attributes to retrieve
 required: false
 schema:
 type: array
 items:
 type: string
 example:
 - lastname
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '200':
 description: Read successful
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/CredentialRequest'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 put:
 tags:
 - Credential Request
 summary: Update a credential request
 operationId: updateCredentialRequest
 security:
 - BearerAuth: [cms.request.write]
 parameters:
 - name: credentialRequestId
 in: path
 description: the id of the credential request
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/CredentialRequest'
 responses:
 '204':
 description: Update successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Update not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 delete:
 tags:
 - Credential Request
 summary: Delete a credential request
 operationId: deleteCredentialRequest
 security:
 - BearerAuth: [cms.request.write]
 parameters:
 - name: credentialRequestId
 in: path
 description: the id of the credential request
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '204':
 description: Delete successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Delete not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/credentials:
 post:
 tags:
 - Credential
 summary: Retrieve a list of credentials that match the given search criteria
 operationId: findCredentials
 security:
 - BearerAuth: [cms.credential.read]
 parameters:
 - name: attributes
 in: query
 description: The (optional) set of required attributes to retrieve
 required: false
 schema:
 type: array
 items:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Expressions'
 responses:
 '200':
 description: Read successful
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/Credential'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/credentials/{credentialId}:
 get:
 tags:
 - Credential
 summary: Read a credential
 operationId: readCredential
 security:
 - BearerAuth: [cms.credential.read]
 parameters:
 - name: credentialId
 in: path
 description: the id of the credential
 required: true
 schema:
 type: string
 - name: attributes
 in: query
 description: The (optional) set of required attributes to retrieve
 required: false
 schema:
 type: array
 items:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 responses:
 '200':
 description: Read successful
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Credential'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/credentials/{credentialId}/suspend:
 post:
 tags:
 - Credential
 summary: Suspend a credential
 operationId: suspendCredential
 security:
 - BearerAuth: [cms.credential.write]
 parameters:
 - name: credentialId
 in: path
 description: the id of the credential
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 properties:
 reason:
 type: string
 description: the reason for suspension
 responses:
 '204':
 description: Update successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Update not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/credentials/{credentialId}/unsuspend:
 post:
 tags:
 - Credential
 summary: Unsuspend a credential
 operationId: unsuspendCredential
 security:
 - BearerAuth: [cms.credential.write]
 parameters:
 - name: credentialId
 in: path
 description: the id of the credential
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 properties:
 reason:
 type: string
 description: the reason for unsuspension
 responses:
 '204':
 description: Update successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Update not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/credentials/{credentialId}/revoke:
 post:
 tags:
 - Credential
 summary: Revoke a credential
 operationId: revokeCredential
 security:
 - BearerAuth: [cms.credential.write]
 parameters:
 - name: credentialId
 in: path
 description: the id of the credential
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 properties:
 reason:
 type: string
 description: the reason for revocation

 responses:
 '204':
 description: Update successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Update not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/credentials/{credentialId}/status:
 post:
 tags:
 - Credential
 summary: Change the status of a credential
 operationId: setCredentialStatus
 security:
 - BearerAuth: [cms.credential.write]
 parameters:
 - name: credentialId
 in: path
 description: the id of the credential
 required: true
 schema:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 required:
 - status
 properties:
 status:
 type: string
 description: The new status of the credential
 reason:
 type: string
 description: The reason for the change of status
 requester:
 type: string
 description: The ID/name of the entity requesting the change
 comment:
 type: string
 description: A free comment
 additionalProperties: false
 responses:
 '204':
 description: Operation successful
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Operation not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 /v1/credentialProfiles:
 post:
 tags:
 - Credential Profile
 summary: Retrieve a list of credential profiles that match the given search criteria
 operationId: findCredentialProfiles
 security:
 - BearerAuth: [cms.profile.read]
 parameters:
 - name: attributes
 in: query
 description: The (optional) set of required attributes to retrieve
 required: false
 schema:
 type: array
 items:
 type: string
 - name: transactionId
 in: query
 description: The id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Expressions'
 responses:
 '200':
 description: Read successful
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/CredentialProfile'
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 '403':
 description: Read not allowed
 '404':
 description: Unknown record
 '500':
 description: Unexpected error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

components:
 securitySchemes:
 BearerAuth:
 type: http
 scheme: bearer
 bearerFormat: JWT
 schemas:
 Error:
 type: object
 required:
 - code
 - message
 properties:
 code:
 description: Error code
 type: integer
 format: int32
 message:
 description: Error message
 type: string
 additionalProperties: false
 Address:
 type: object
 properties:
 address1:
 type: string
 description: the first line of the address
 address2:
 type: string
 description: the second line of the address
 city:
 type: string
 description: the city of the address
 state:
 type: string
 description: the state of the address
 postalCode:
 type: string
 description: the postal code of the address
 country:
 type: string
 description: the country of the address
 additionalProperties: true
 example:
 address1: 11 Rue des Rosiers
 address2:
 city: Libourne
 state:
 postalCode: '33500'
 country: France
 BiographicData:
 type: object
 description: The biographic data included in the credential. Can be extended.
 example:
 title: Mr
 firstName: John
 lastName: Doo
 dateOfBirth: "1985-11-30"
 gender: M
 nationality: FRA
 email: john.doo@example.com
 mobileNumber: +123456789
 additionalProperties: true
 BiometricData:
 type: object
 required:
 - biometricType
 properties:
 biometricType:
 $ref: '#/components/schemas/BiometricType'
 biometricSubType:
 $ref: '#/components/schemas/BiometricSubType'
 instance:
 type: string
 description: Used to separate two distincts biometric items of the same type and subtype
 encounterId:
 type: string
 description: the id of the encounter
 image:
 type: string
 format: byte
 description: Base64-encoded image
 imageRef:
 type: string
 format: uri
 description: URI to an image
 example: "http://imageserver.com/image?id=00003"
 captureDate:
 type: string
 format: date
 example: "2019-05-21"
 captureDevice:
 type: string
 description: A string identifying the device used to capture the biometric
 width:
 type: integer
 description: the width of the image
 height:
 type: integer
 description: the height of the image
 bitdepth:
 type: integer
 resolution:
 type: integer
 description: the image resolution (in DPI)
 compression:
 $ref: '#/components/schemas/CompressionType'
 missing:
 description: Optional properties indicating if a part of the biometric data is missing
 type: array
 items:
 $ref: '#/components/schemas/MissingType'
 metadata:
 type: string
 description: An optional string used to convey information vendor-specific
 comment:
 type: string
 description: A comment about the biometric data
 template:
 type: string
 format: byte
 description: Base64-encoded template
 templateFormat:
 $ref: '#/components/schemas/TemplateFormat'
 additionalProperties: false
 TemplateFormat:
 type: string
 description: |
 Format of the template.
 One of ISO_19794_2, ISO_19794_2_NS, ISO_19794_2_CS, ISO_19794_2_2011, ANSI_378_2009 or ANSI_378.
 Can be extended to include additional proprietary template format
 MissingType:
 type: object
 properties:
 biometricSubType:
 $ref: '#/components/schemas/BiometricSubType'
 presence:
 type: string
 enum: [BANDAGED, AMPUTATED, DAMAGED]
 additionalProperties: false
 BiometricType:
 type: string
 enum:
 - FACE
 - FINGER
 - IRIS
 - SIGNATURE
 - UNKNOWN
 BiometricSubType:
 type: string
 enum:
 - UNKNOWN
 - RIGHT_THUMB
 - RIGHT_INDEX
 - RIGHT_MIDDLE
 - RIGHT_RING
 - RIGHT_LITTLE
 - LEFT_THUMB
 - LEFT_INDEX
 - LEFT_MIDDLE
 - LEFT_RING
 - LEFT_LITTLE
 - PLAIN_RIGHT_FOUR_FINGERS
 - PLAIN_LEFT_FOUR_FINGERS
 - PLAIN_THUMBS

 - UNKNOWN_PALM
 - RIGHT_FULL_PALM
 - RIGHT_WRITERS_PALM
 - LEFT_FULL_PALM
 - LEFT_WRITERS_PALM
 - RIGHT_LOWER_PALM
 - RIGHT_UPPER_PALM
 - LEFT_LOWER_PALM
 - LEFT_UPPER_PALM
 - RIGHT_OTHER
 - LEFT_OTHER
 - RIGHT_INTERDIGITAL
 - RIGHT_THENAR
 - LEFT_INTERDIGITAL
 - LEFT_THENAR
 - LEFT_HYPOTHENAR

 - RIGHT_INDEX_AND_MIDDLE
 - RIGHT_MIDDLE_AND_RING
 - RIGHT_RING_AND_LITTLE
 - LEFT_INDEX_AND_MIDDLE
 - LEFT_MIDDLE_AND_RING
 - LEFT_RING_AND_LITTLE
 - RIGHT_INDEX_AND_LEFT_INDEX
 - RIGHT_INDEX_AND_MIDDLE_AND_RING
 - RIGHT_MIDDLE_AND_RING_AND_LITTLE
 - LEFT_INDEX_AND_MIDDLE_AND_RING
 - LEFT_MIDDLE_AND_RING_AND_LITTLE

 - EYE_UNDEF
 - EYE_RIGHT
 - EYE_LEFT

 - PORTRAIT
 - LEFT_PROFILE
 - RIGHT_PROFILE

 CompressionType:
 type: string
 enum: [NONE, WSQ, JPEG, JPEG2000, PNG]

 RequestData:
 type: object
 description: The data describing the request itself
 required:
 - priority
 - credentialProfileId
 - requestType
 properties:
 priority:
 type: string
 enum: [HIGH, MEDIUM, LOW]
 credentialProfileId:
 type: string
 description: The id of the credential profile to request
 requestType:
 type: string
 description: The type of request, e.g. first issuance, renewal, etc.
 enum: [FIRST_ISSUANCE, RENEWAL, REPLACEMENT, OTHER]
 requestTypeOther:
 type: string
 description: Details about the request type when OTHER is selected
 validFromDate:
 type: string
 format: date-time
 description: May be used to override the default start date of the
 requested credential. This must only be later than the current
 date, not earlier.
 validToDate:
 type: string
 format: date-time
 description: May be used to override the default expiry date of the
 requested credential. This must only be earlier than the default
 expiry, not later.
 issuingAuthority:
 type: string
 deliveryAddress:
 $ref: '#/components/schemas/Address'
 parentCredentialId:
 type: string
 description: The ID credential used as a reference, or parent, to build a new one
 additionalProperties: true
 example:
 priority: MEDIUM
 credentialProfileId: ABC
 requestType: "FIRST_ISSUANCE"
 validFromDate: "2020-10-08T18:38:56.085303"
 validToDate: "2025-10-08T18:38:56.085303"
 issuingAuthority: OSIA
 deliveryAddress:
 address1: 11 Rue des Rosiers
 city: Libourne
 postalCode: "33500"
 country: France
 CredentialRequest:
 type: object
 description: A request for a credential
 required:
 - credentialProfileId
 - personId
 - biographicData
 - requestData
 properties:
 credentialRequestId:
 type: string
 description: The unique id of this credential request
 status:
 type: string
 enum: [PENDING, ISSUED, CANCELLED, FAILED]
 requestData:
 $ref: '#/components/schemas/RequestData'
 personId:
 type: string
 description: The id of the person who is the target of the request
 biographicData:
 $ref: '#/components/schemas/BiographicData'
 biometricData:
 type: array
 items:
 $ref: '#/components/schemas/BiometricData'
 additionalProperties: false

 Credential:
 description: A credential
 type: object
 required:
 - credentialId
 - status
 - personId
 - credentialProfileId
 properties:
 credentialId:
 type: string
 description: The unique id for this credential
 status:
 type: string
 description: The status of the credential
 enum: [NEW, ACTIVE, SUSPENDED, REVOKED, OTHER]
 statusOther:
 type: string
 description: Details about the status when OTHER is used
 personId:
 type: string
 description: The unique id of the person that the credential request is for
 credentialProfileId:
 type: string
 description: The unique id of the credential profile
 issuedDate:
 type: string
 format: date-time
 description: The date that this credential was issued
 expiryDate:
 type: string
 format: date-time
 description: The date that this credential expires
 serialNumber:
 type: string
 description: the serial number of the credential
 additionalProperties: true
 CredentialProfile:
 description: A credential profile
 type: object
 properties:
 credentialProfileId:
 type: string
 description: The unique id for this credential profile
 name:
 type: string
 description: The name of the credential profile
 description:
 type: string
 description: The description of the credential profile
 credentialType:
 description: The type of credential that this profile will issue
 type: string
 enum:
 - SMARTCARD
 - VIRTUAL_SMARTCARD
 - MOBILE
 - PASSPORT
 - ID_CARD
 defaultLifetime:
 type: integer
 description: The default number of days that this credential will be considered valid for after issuance.
 additionalProperties: false
 Expression:
 type: object
 required:
 - attributeName
 - operator
 - value
 properties:
 attributeName:
 type: string
 operator:
 type: string
 enum: ['<', '>', '=', '>=', '<=', '!=']
 value:
 oneOf:
 - type: string
 - type: integer
 - type: number
 - type: boolean
 additionalProperties: false
 Expressions:
 type: array
 items:
 $ref: '#/components/schemas/Expression'

Secure Identity Alliance

OSIA, Release 5.0.0

Status Codes

• 201 Created – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/credentialRequests/{credentialRequestId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"credentialRequestId": "string",
"status": "PENDING",
"requestData": {

"priority": "MEDIUM",
"credentialProfileId": "ABC",
"requestType": "FIRST_ISSUANCE",
"validFromDate": "2020-10-08T18:38:56.085303",
"validToDate": "2025-10-08T18:38:56.085303",
"issuingAuthority": "OSIA",
"deliveryAddress": {

"address1": "11 Rue des Rosiers",
"city": "Libourne",
"postalCode": "33500",
"country": "France"

}
},
"personId": "string",
"biographicData": {

"title": "Mr",
"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA",
"email": "john.doo@example.com",
"mobileNumber": 123456789

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"encounterId": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string",
"template": "c3RyaW5n",
"templateFormat": "string"

}
]

}

7.3. Technical Specifications 201

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/credentialRequests/{credentialRequestId}
Read a credential request

Scope required: cms.request.read

Parameters

• credentialRequestId (string) – the id of the credential request

Query Parameters

• attributes (array) – The (optional) set of attributes to retrieve

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Read successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/credentialRequests/{credentialRequestId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"credentialRequestId": "string",
"status": "PENDING",
"requestData": {

"priority": "MEDIUM",
"credentialProfileId": "ABC",
"requestType": "FIRST_ISSUANCE",
"validFromDate": "2020-10-08T18:38:56.085303",
"validToDate": "2025-10-08T18:38:56.085303",
"issuingAuthority": "OSIA",
"deliveryAddress": {

"address1": "11 Rue des Rosiers",
"city": "Libourne",
"postalCode": "33500",

(continues on next page)

7.3. Technical Specifications 202

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"country": "France"
}

},
"personId": "string",
"biographicData": {

"title": "Mr",
"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA",
"email": "john.doo@example.com",
"mobileNumber": 123456789

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"encounterId": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string",
"template": "c3RyaW5n",
"templateFormat": "string"

}
]

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

PUT /v1/credentialRequests/{credentialRequestId}
Update a credential request

Scope required: cms.request.write

Parameters

7.3. Technical Specifications 203

OSIA, Release 5.0.0

• credentialRequestId (string) – the id of the credential request

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Update successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

PUT /v1/credentialRequests/{credentialRequestId}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"credentialRequestId": "string",
"status": "PENDING",
"requestData": {

"priority": "MEDIUM",
"credentialProfileId": "ABC",
"requestType": "FIRST_ISSUANCE",
"validFromDate": "2020-10-08T18:38:56.085303",
"validToDate": "2025-10-08T18:38:56.085303",
"issuingAuthority": "OSIA",
"deliveryAddress": {

"address1": "11 Rue des Rosiers",
"city": "Libourne",
"postalCode": "33500",
"country": "France"

}
},
"personId": "string",
"biographicData": {

"title": "Mr",
"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA",
"email": "john.doo@example.com",
"mobileNumber": 123456789

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"encounterId": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}

(continues on next page)

7.3. Technical Specifications 204

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

],
"metadata": "string",
"comment": "string",
"template": "c3RyaW5n",
"templateFormat": "string"

}
]

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

DELETE /v1/credentialRequests/{credentialRequestId}
Delete a credential request

Scope required: cms.request.write

Parameters

• credentialRequestId (string) – the id of the credential request

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Delete successful

• 400 Bad Request – Bad request

• 403 Forbidden – Delete not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{

(continues on next page)

7.3. Technical Specifications 205

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"code": 1,
"message": "string"

}

Credential

POST /v1/credentials
Retrieve a list of credentials that match the given search criteria

Scope required: cms.credential.read

Query Parameters

• attributes (array) – The (optional) set of required attributes to retrieve

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Read successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/credentials?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

[
{

"attributeName": "string",
"operator": "<",
"value": "string"

}
]

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"credentialId": "string",
"status": "NEW",
"statusOther": "string",
"personId": "string",
"credentialProfileId": "string",
"issuedDate": "2020-12-17T15:35:45.060099",
"expiryDate": "2020-12-17T15:35:45.060099",
"serialNumber": "string"

}
]

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{

(continues on next page)

7.3. Technical Specifications 206

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/credentials/{credentialId}
Read a credential

Scope required: cms.credential.read

Parameters

• credentialId (string) – the id of the credential

Query Parameters

• attributes (array) – The (optional) set of required attributes to retrieve

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Read successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

GET /v1/credentials/{credentialId}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"credentialId": "string",
"status": "NEW",
"statusOther": "string",
"personId": "string",
"credentialProfileId": "string",
"issuedDate": "2020-12-17T15:35:45.060099",
"expiryDate": "2020-12-17T15:35:45.060099",
"serialNumber": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,

(continues on next page)

7.3. Technical Specifications 207

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"message": "string"
}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/credentials/{credentialId}/suspend
Suspend a credential

Scope required: cms.credential.write

Parameters

• credentialId (string) – the id of the credential

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Update successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/credentials/{credentialId}/suspend?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"reason": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

7.3. Technical Specifications 208

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

POST /v1/credentials/{credentialId}/unsuspend
Unsuspend a credential

Scope required: cms.credential.write

Parameters

• credentialId (string) – the id of the credential

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Update successful

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/credentials/{credentialId}/unsuspend?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"reason": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/credentials/{credentialId}/revoke
Revoke a credential

Scope required: cms.credential.write

Parameters

• credentialId (string) – the id of the credential

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Update successful

7.3. Technical Specifications 209

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

OSIA, Release 5.0.0

• 400 Bad Request – Bad request

• 403 Forbidden – Update not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/credentials/{credentialId}/revoke?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"reason": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/credentials/{credentialId}/status
Change the status of a credential

Scope required: cms.credential.write

Parameters

• credentialId (string) – the id of the credential

Query Parameters

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 204 No Content – Operation successful

• 400 Bad Request – Bad request

• 403 Forbidden – Operation not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/credentials/{credentialId}/status?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{

(continues on next page)

7.3. Technical Specifications 210

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"status": "string",
"reason": "string",
"requester": "string",
"comment": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Credential Profile

POST /v1/credentialProfiles
Retrieve a list of credential profiles that match the given search criteria

Scope required: cms.profile.read

Query Parameters

• attributes (array) – The (optional) set of required attributes to retrieve

• transactionId (string) – The id of the transaction (Required)

Status Codes

• 200 OK – Read successful

• 400 Bad Request – Bad request

• 403 Forbidden – Read not allowed

• 404 Not Found – Unknown record

• 500 Internal Server Error – Unexpected error

Example request:

POST /v1/credentialProfiles?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

[
{

"attributeName": "string",
"operator": "<",
"value": "string"

}
]

Example response:

7.3. Technical Specifications 211

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"credentialProfileId": "string",
"name": "string",
"description": "string",
"credentialType": "SMARTCARD",
"defaultLifetime": 1

}
]

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Data Model

To be completed

7.3.8 ID Usage Services

Relying Party Services

This is version 1.0.0 of this interface.

Get the OpenAPI file:

Services

POST /v1/verify/{identifier}
Verify a set of attributes of a person.

Verify an Identity based on an identity identifier (UIN, token. . .) and a set of Identity Attributes. Verification
is strictly matching all provided identity attributes to compute the global Boolean matching result.

Scope required: id.verify

Parameters

• identifier (string) – person identifier

Query Parameters

• identifierType (string) – Type of identifier (default “uin”, “token”, “docu-
mentNumber”, . . .)

7.3. Technical Specifications 212

(c) Secure Identity Alliance
openapi: 3.0.0
info:
 description: |
 The OSIA IDUsage Relying Party Interface
 Change log:
 - 1.0.0: Initial version
 version: 1.0.0
 title: The OSIA IDUsage Relying Party Interface
 license:
 name: SIA
 url: "https://raw.githubusercontent.com/SecureIdentityAlliance/osia/master/LICENSE"
servers:
 - url: https://rp.server.com
tags:
 - name: IDUsage
 description: REST API OSIA interfaces

paths:

 /v1/verify/{identifier}:
 post:
 tags:
 - IDUsage
 summary: Verify a set of attributes of a person.
 description: >-
 Verify an Identity based on an identity identifier (UIN, token…) and a
 set of Identity Attributes. Verification is strictly matching all
 provided identity attributes to compute the global Boolean matching
 result.
 operationId: verify
 security:
 - BearerAuth: [id.verify]
 parameters:
 - name: identifier
 in: path
 description: person identifier
 required: true
 schema:
 type: string
 example: "1235567890"
 - name: identifierType
 in: query
 description: Type of identifier (default "uin", "token", "documentNumber", ...)
 required: false
 schema:
 type: string
 example: "token"
 - name: verificationProofRequired
 in: query
 description: verification proof required on successful verification (default true)
 required: false
 schema:
 type: boolean
 - name: transactionId
 in: query
 description: The client specified id of the transaction
 required: true
 schema:
 type: string
 requestBody:
 description: >-
 A set of identity attributes associated to the identity identifier
 and to be verified by the system
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/AttributeSet"
 required: true

 responses:
 200:
 description: Verification execution successful
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/VerifyResult'
 400:
 description: 'Bad Request, Validation Errors, ...'
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 401:
 description: Unauthorized
 403:
 description: Operation not allowed
 404:
 description: Identifier not Found
 500:
 description: Internal server error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/attributes/{attributeSetName}/{identifier}:
 get:
 tags:
 - IDUsage
 summary: Read a predefined set of a person's attributes.
 description: Note security role must map the requested attributeSetName, e.g. id.DEFAULT_SET_01.read
 operationId: readAttributeSet
 security:
 - BearerAuth: [id.ATTRIBUTESETNAME.read]
 parameters:
 - name: attributeSetName
 in: path
 description: Predefined attribute set name describing what attributes are to be read. e.g. "DEFAULT_SET_01", "SET_BIOM_01", "EIDAS", ...
 required: true
 schema:
 type: string
 example: "DEFAULT_SET_01"
 - name: identifier
 in: path
 description: person identifier
 required: true
 schema:
 type: string
 example: "1235567890"
 - name: identifierType
 in: query
 description: Type of identifier (default "uin", "token", "documentNumber", ...)
 required: false
 schema:
 type: string
 example: "token"
 - name: transactionId
 in: query
 description: The client specified id of the transaction
 required: true
 schema:
 type: string

 responses:
 200:
 description: Operation successful, AttributeSet will contain fields as predefined by the attributeSetName and when value is available
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/AttributeSet'
 400:
 description: 'Bad Request, Validation Errors, ...'
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 401:
 description: Unauthorized
 403:
 description: Operation not allowed
 404:
 description: Not Found
 500:
 description: Internal server error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/attributes/{identifier}:
 post:
 tags:
 - IDUsage
 summary: Read a variable set of a person's attributes.
 description: Returns value of attributes listed in the request parameter 'OutputAttributeSet'
 operationId: readAttributes
 security:
 - BearerAuth: [id.read]
 parameters:
 - name: identifier
 in: path
 description: person identifier
 required: true
 schema:
 type: string
 example: "1235567890"
 - name: identifierType
 in: query
 description: Type of identifier (default "uin", "token", "documentNumber", ...)
 required: false
 schema:
 type: string
 example: "token"
 - name: transactionId
 in: query
 description: The client specified id of the transaction
 required: true
 schema:
 type: string

 requestBody:
 description: >-
 A description of expected identity attributes
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/OutputAttributeSet"
 required: true

 responses:
 200:
 description: Operation successful, AttributeSet will contain fields as defined by parameter outputAttributeSet and when value is available
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/AttributeSet'
 400:
 description: 'Bad Request, Validation Errors, ...'
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 401:
 description: Unauthorized
 403:
 description: Operation not allowed
 404:
 description: Not Found
 500:
 description: Internal server error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/identify:
 post:
 tags:
 - IDUsage
 summary: Identify a set of persons matching provided partial attributes
 description: >-
 Identify possibly matching identities against an input set of attributes. Returns an array of predefined datasets as described by outputDataSetName.
 Note this request may be asynchronous or synchronous.
 operationId: identify
 security:
 - BearerAuth: [id.identify]
 parameters:
 - name: transactionId
 in: query
 description: The client specified id of the transaction
 required: true
 schema:
 type: string

 requestBody:
 description: >-
 A set of identity attributes to match and an attributeSetName to use as template for returned matching identities.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/IdentifyRequest"
 required: true

 responses:
 200:
 description: Identification request execution successful
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/AttributeSet'
 202:
 description: |
 Request received successfully and correct, result will be available later using the task ID returned
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/TaskId'
 400:
 description: 'Bad Request, Validation Errors, ...'
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 401:
 description: Unauthorized
 403:
 description: Operation not allowed
 404:
 description: Identifier not Found
 500:
 description: Internal server error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

 /v1/identify/{taskID}:
 get:
 tags:
 - IDUsage
 summary: Read the result of a previously sent identify request
 operationId: readIdentifyResult
 security:
 - BearerAuth: [id.identify]
 parameters:
 - name: taskID
 in: path
 description: taskID to get result for.
 required: true
 schema:
 type: string
 example : "ABCDEFGHIJKLMNO"
 - name: transactionId
 in: query
 description: The client specified id of the transaction
 required: true
 schema:
 type: string

 responses:
 200:
 description: Operation successful, array of AttributeSet is available
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: '#/components/schemas/AttributeSet'
 204:
 description: No content, taskID is valid but identify request is still ongoing, retry later
 400:
 description: 'Bad Request, Validation Errors, ...'
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'
 401:
 description: Unauthorized
 403:
 description: Operation not allowed
 404:
 description: Not Found
 500:
 description: Internal server error
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Error'

components:
 securitySchemes:
 BearerAuth:
 type: http
 scheme: bearer
 bearerFormat: JWT

 schemas:
 AttributeSet:
 type: object
 description: a set of attributes used in verify
 properties:
 biographicData:
 $ref: '#/components/schemas/BiographicData'
 biometricData:
 type: array
 items:
 $ref: '#/components/schemas/BiometricData'
 credentialData:
 type: array
 items:
 $ref: '#/components/schemas/CredentialData'
 contactData:
 $ref: '#/components/schemas/ContactData'
 additionalProperties: false

 # Different from other interfaces as contact data is externalized
 BiographicData:
 type: object
 additionalProperties: true
 example:
 firstName: John
 lastName: Doo
 dateOfBirth: "1985-11-30"
 gender: M
 nationality: FRA

 ContactData:
 type: object
 additionalProperties: true
 example:
 email: John.Doo@osia.com
 phone1: "555666777"
 phone2: "555888999"

 BiometricData:
 type: object
 required:
 - biometricType
 properties:
 biometricType:
 $ref: '#/components/schemas/BiometricType'
 biometricSubType:
 $ref: '#/components/schemas/BiometricSubType'
 instance:
 type: string
 description: Used to separate two distincts biometric items of the same type and subtype
 image:
 type: string
 format: byte
 description: Base64-encoded image
 imageRef:
 type: string
 format: uri
 description: URI to an image
 example: "http://imageserver.com/image?id=00003"
 captureDate:
 type: string
 format: date
 example: "2019-05-21"
 captureDevice:
 type: string
 description: A string identifying the device used to capture the biometric
 width:
 type: integer
 description: the width of the image
 height:
 type: integer
 description: the height of the image
 bitdepth:
 type: integer
 resolution:
 type: integer
 description: the image resolution (in DPI)
 compression:
 $ref: '#/components/schemas/CompressionType'
 missing:
 description: Optional properties indicating if a part of the biometric data is missing
 type: array
 items:
 $ref: '#/components/schemas/MissingType'
 metadata:
 type: string
 description: An optional string used to convey information vendor-specific
 comment:
 type: string
 description: A comment about the biometric data
 additionalProperties: false

 BiometricType:
 type: string
 enum:
 - FACE
 - FINGER
 - IRIS
 - SIGNATURE
 - UNKNOWN

 BiometricSubType:
 type: string
 enum:
 - UNKNOWN
 - RIGHT_THUMB
 - RIGHT_INDEX
 - RIGHT_MIDDLE
 - RIGHT_RING
 - RIGHT_LITTLE
 - LEFT_THUMB
 - LEFT_INDEX
 - LEFT_MIDDLE
 - LEFT_RING
 - LEFT_LITTLE
 - PLAIN_RIGHT_FOUR_FINGERS
 - PLAIN_LEFT_FOUR_FINGERS
 - PLAIN_THUMBS

 - UNKNOWN_PALM
 - RIGHT_FULL_PALM
 - RIGHT_WRITERS_PALM
 - LEFT_FULL_PALM
 - LEFT_WRITERS_PALM
 - RIGHT_LOWER_PALM
 - RIGHT_UPPER_PALM
 - LEFT_LOWER_PALM
 - LEFT_UPPER_PALM
 - RIGHT_OTHER
 - LEFT_OTHER
 - RIGHT_INTERDIGITAL
 - RIGHT_THENAR
 - LEFT_INTERDIGITAL
 - LEFT_THENAR
 - LEFT_HYPOTHENAR

 - RIGHT_INDEX_AND_MIDDLE
 - RIGHT_MIDDLE_AND_RING
 - RIGHT_RING_AND_LITTLE
 - LEFT_INDEX_AND_MIDDLE
 - LEFT_MIDDLE_AND_RING
 - LEFT_RING_AND_LITTLE
 - RIGHT_INDEX_AND_LEFT_INDEX
 - RIGHT_INDEX_AND_MIDDLE_AND_RING
 - RIGHT_MIDDLE_AND_RING_AND_LITTLE
 - LEFT_INDEX_AND_MIDDLE_AND_RING
 - LEFT_MIDDLE_AND_RING_AND_LITTLE

 - EYE_UNDEF
 - EYE_RIGHT
 - EYE_LEFT

 - PORTRAIT
 - LEFT_PROFILE
 - RIGHT_PROFILE

 CompressionType:
 type: string
 enum: [NONE, WSQ, JPEG, JPEG2000, PNG]

 MissingType:
 type: object
 properties:
 biometricSubType:
 $ref: '#/components/schemas/BiometricSubType'
 presence:
 type: string
 enum: [BANDAGED, AMPUTATED, DAMAGED]
 additionalProperties: false

 CredentialData:
 description: A credential
 type: object
 properties:
 credentialId:
 type: string
 description: The unique id for this credential
 status:
 type: string
 description: The status of the credential
 enum: [NEW, ACTIVE, SUSPENDED, REVOKED, OTHER]
 statusOther:
 type: string
 description: Details about the status when OTHER is used
 personId:
 type: string
 description: The unique id of the person that the credential request is for
 credentialType:
 $ref: '#/components/schemas/CredentialType'
 issuedDate:
 type: string
 format: date
 description: The date that this credential was issued
 expiryDate:
 type: string
 format: date
 description: The date that this credential expires
 serialNumber:
 type: string
 description: the serial number of the credential
 additionalProperties: true

 CredentialType:
 description: Type of the credential. e.g. "PASSPORT", "ID_CARD", ...
 type: string
 example: "ID_CARD"

 Error:
 type: object
 required:
 - code
 - message
 properties:
 code:
 description: Error code
 type: integer
 format: int32
 message:
 description: Error message
 type: string
 additionalProperties: false

 VerifyResult:
 description : result of a successful verify request
 type: object
 required:
 - verificationCode
 - verificationMessage
 properties:
 verificationCode:
 type: integer
 format: int64
 verificationMessage:
 type: string
 verificationProof:
 type: string

 IdentifyRequest:
 type: object
 description: a set of parameters used in identify
 required:
 - attributeSet
 - outputAttributeSetName
 properties:
 attributeSet:
 $ref: '#/components/schemas/AttributeSet'
 outputAttributeSetName:
 description: Attribute set name describing what attributes are to be read. e.g. "DEFAULT_SET_01", "SET_BIOM_01", "EIDAS", ...
 type: string
 example: "DEFAULT_SET_01"
 additionalProperties: false

 OutputAttributeSet:
 type: object
 description: A template describing the expected attributes of a readAttributes request
 properties:
 outputBiographicData:
 description : list of BiographicData structure fields to include in the answer
 type: array
 items:
 type: string
 example : ["name","firstname"]
 outputBiometricData:
 type: array
 description : an array of expected biometric data & fields
 items:
 type: object
 description : biometric type and subtype, list of BiometricData fields to include in the answer
 properties:
 biometricType:
 $ref: '#/components/schemas/BiometricType'
 biometricSubType:
 $ref: '#/components/schemas/BiometricSubType'
 biometricDataFields:
 type: array
 example : ["image","captureDate"]
 items:
 type: string
 outputCredentialData:
 type: array
 description : an array of expected credential type & fields
 items:
 type: object
 description : credential type and list of CredentialData structure fields to include in the answer
 properties:
 #TODO : check credential type vs cms.yaml!!
 credentialType:
 $ref: '#/components/schemas/CredentialType'
 credentialDataFields:
 type: array
 example : ["serialNumber","validFromDate","validToDate"]
 items:
 type: string
 outputContactData:
 description : list of ContactData structure fields to include in the answer
 type: array
 example : ["phone1","email"]
 items:
 type: string

 additionalProperties: false

 TaskId:
 description: |
 Information about the asynchronous result. Only the taskId is mandatory but
 the implementation is free to return additional details such as: expected
 duration, URL to monitor the task, etc.
 type: object
 required:
 - taskId
 properties:
 taskId:
 type: string
 example: '"123e4567-e89b-12d3-a456-426655440000"'
 additionalProperties: true

Secure Identity Alliance

OSIA, Release 5.0.0

• verificationProofRequired (boolean) – verification proof required on suc-
cessful verification (default true)

• transactionId (string) – The client specified id of the transaction (Required)

Status Codes

• 200 OK – Verification execution successful

• 400 Bad Request – Bad Request, Validation Errors, . . .

• 401 Unauthorized – Unauthorized

• 403 Forbidden – Operation not allowed

• 404 Not Found – Identifier not Found

• 500 Internal Server Error – Internal server error

Example request:

POST /v1/verify/{identifier}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"credentialData": [

{
"credentialId": "string",
"status": "NEW",
"statusOther": "string",
"personId": "string",
"credentialType": "string",
"issuedDate": "2020-12-17",
"expiryDate": "2020-12-17",
"serialNumber": "string"

}
],
"contactData": {

"email": "John.Doo@osia.com",
"phone1": "555666777",

(continues on next page)

7.3. Technical Specifications 213

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"phone2": "555888999"
}

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"verificationCode": 1,
"verificationMessage": "string",
"verificationProof": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/attributes/{attributeSetName}/{identifier}
Read a predefined set of a person’s attributes.

Note security role must map the requested attributeSetName, e.g. id.DEFAULT_SET_01.read

Scope required: id.ATTRIBUTESETNAME.read

Parameters

• attributeSetName (string) – Predefined attribute set name describing what at-
tributes are to be read. e.g. “DEFAULT_SET_01”, “SET_BIOM_01”, “EIDAS”, . . .

• identifier (string) – person identifier

Query Parameters

• identifierType (string) – Type of identifier (default “uin”, “token”, “docu-
mentNumber”, . . .)

• transactionId (string) – The client specified id of the transaction (Required)

Status Codes

• 200 OK – Operation successful, AttributeSet will contain fields as predefined by the
attributeSetName and when value is available

• 400 Bad Request – Bad Request, Validation Errors, . . .

• 401 Unauthorized – Unauthorized

• 403 Forbidden – Operation not allowed

• 404 Not Found – Not Found

• 500 Internal Server Error – Internal server error

7.3. Technical Specifications 214

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

Example request:

GET /v1/attributes/{attributeSetName}/{identifier}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"credentialData": [

{
"credentialId": "string",
"status": "NEW",
"statusOther": "string",
"personId": "string",
"credentialType": "string",
"issuedDate": "2020-12-17",
"expiryDate": "2020-12-17",
"serialNumber": "string"

}
],
"contactData": {

"email": "John.Doo@osia.com",
"phone1": "555666777",
"phone2": "555888999"

}
}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

7.3. Technical Specifications 215

OSIA, Release 5.0.0

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/attributes/{identifier}
Read a variable set of a person’s attributes.

Returns value of attributes listed in the request parameter ‘OutputAttributeSet’

Scope required: id.read

Parameters

• identifier (string) – person identifier

Query Parameters

• identifierType (string) – Type of identifier (default “uin”, “token”, “docu-
mentNumber”, . . .)

• transactionId (string) – The client specified id of the transaction (Required)

Status Codes

• 200 OK – Operation successful, AttributeSet will contain fields as defined by parameter
outputAttributeSet and when value is available

• 400 Bad Request – Bad Request, Validation Errors, . . .

• 401 Unauthorized – Unauthorized

• 403 Forbidden – Operation not allowed

• 404 Not Found – Not Found

• 500 Internal Server Error – Internal server error

Example request:

POST /v1/attributes/{identifier}?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"outputBiographicData": [

"string"
],
"outputBiometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"biometricDataFields": [

"string"
]

}
],
"outputCredentialData": [

{
"credentialType": "string",
"credentialDataFields": [

"string"
]

}
],
"outputContactData": [

(continues on next page)

7.3. Technical Specifications 216

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"string"
]

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"biographicData": {

"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"credentialData": [

{
"credentialId": "string",
"status": "NEW",
"statusOther": "string",
"personId": "string",
"credentialType": "string",
"issuedDate": "2020-12-17",
"expiryDate": "2020-12-17",
"serialNumber": "string"

}
],
"contactData": {

"email": "John.Doo@osia.com",
"phone1": "555666777",
"phone2": "555888999"

}
}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

7.3. Technical Specifications 217

OSIA, Release 5.0.0

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

POST /v1/identify
Identify a set of persons matching provided partial attributes

Identify possibly matching identities against an input set of attributes. Returns an array of predefined
datasets as described by outputDataSetName. Note this request may be asynchronous or synchronous.

Scope required: id.identify

Query Parameters

• transactionId (string) – The client specified id of the transaction (Required)

Status Codes

• 200 OK – Identification request execution successful

• 202 Accepted – Request received successfully and correct, result will be available later
using the task ID returned

• 400 Bad Request – Bad Request, Validation Errors, . . .

• 401 Unauthorized – Unauthorized

• 403 Forbidden – Operation not allowed

• 404 Not Found – Identifier not Found

• 500 Internal Server Error – Internal server error

Example request:

POST /v1/identify?transactionId=string HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: Bearer cn389ncoiwuencr

{
"attributeSet": {

"biographicData": {
"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",

(continues on next page)

7.3. Technical Specifications 218

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

(continued from previous page)

"presence": "BANDAGED"
}

],
"metadata": "string",
"comment": "string"

}
],
"credentialData": [

{
"credentialId": "string",
"status": "NEW",
"statusOther": "string",
"personId": "string",
"credentialType": "string",
"issuedDate": "2020-12-17",
"expiryDate": "2020-12-17",
"serialNumber": "string"

}
],
"contactData": {

"email": "John.Doo@osia.com",
"phone1": "555666777",
"phone2": "555888999"

}
},
"outputAttributeSetName": "string"

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"biographicData": {
"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"credentialData": [

{
"credentialId": "string",
"status": "NEW",

(continues on next page)

7.3. Technical Specifications 219

OSIA, Release 5.0.0

(continued from previous page)

"statusOther": "string",
"personId": "string",
"credentialType": "string",
"issuedDate": "2020-12-17",
"expiryDate": "2020-12-17",
"serialNumber": "string"

}
],
"contactData": {

"email": "John.Doo@osia.com",
"phone1": "555666777",
"phone2": "555888999"

}
}

]

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"taskId": "string"

}

Example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

GET /v1/identify/{taskID}
Read the result of a previously sent identify request

Scope required: id.identify

Parameters

• taskID (string) – taskID to get result for.

Query Parameters

• transactionId (string) – The client specified id of the transaction (Required)

Status Codes

• 200 OK – Operation successful, array of AttributeSet is available

• 204 No Content – No content, taskID is valid but identify request is still ongoing, retry
later

• 400 Bad Request – Bad Request, Validation Errors, . . .

• 401 Unauthorized – Unauthorized

• 403 Forbidden – Operation not allowed

7.3. Technical Specifications 220

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

OSIA, Release 5.0.0

• 404 Not Found – Not Found

• 500 Internal Server Error – Internal server error

Example request:

GET /v1/identify/{taskID}?transactionId=string HTTP/1.1
Host: example.com
Authorization: Bearer cn389ncoiwuencr

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"biographicData": {
"firstName": "John",
"lastName": "Doo",
"dateOfBirth": "1985-11-30",
"gender": "M",
"nationality": "FRA"

},
"biometricData": [

{
"biometricType": "FACE",
"biometricSubType": "UNKNOWN",
"instance": "string",
"image": "c3RyaW5n",
"imageRef": "https://example.com",
"captureDate": "2020-12-17",
"captureDevice": "string",
"width": 1,
"height": 1,
"bitdepth": 1,
"resolution": 1,
"compression": "NONE",
"missing": [

{
"biometricSubType": "UNKNOWN",
"presence": "BANDAGED"

}
],
"metadata": "string",
"comment": "string"

}
],
"credentialData": [

{
"credentialId": "string",
"status": "NEW",
"statusOther": "string",
"personId": "string",
"credentialType": "string",
"issuedDate": "2020-12-17",
"expiryDate": "2020-12-17",
"serialNumber": "string"

}
],
"contactData": {

"email": "John.Doo@osia.com",
"phone1": "555666777",
"phone2": "555888999"

}
}

]

Example response:

7.3. Technical Specifications 221

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

OSIA, Release 5.0.0

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Example response:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"code": 1,
"message": "string"

}

Data Model

To be completed

7.3. Technical Specifications 222

List of Tables

1.1 OSIA Services Versions . 4

2.1 Components . 7
2.2 Interfaces List . 9
2.3 Components vs Interfaces Mapping . 11

3.1 Scopes List . 22

5.1 Event Type . 33
5.2 Person Attributes . 37
5.3 Certificate Attributes . 37
5.4 Union Attributes . 37
5.5 Filiation Attributes . 37
5.6 Document Type . 37
5.7 Enrolment Data Model . 42
5.8 Population Registry Data Model . 49
5.9 Biometric Services Options . 56
5.10 Biometric Data Model . 57
5.11 Credential Data Model . 61

6.1 Enrolment Data Model . 69
6.2 Event Type . 73
6.3 Person Attributes . 77
6.4 Certificate Attributes . 77
6.5 Union Attributes . 77
6.6 Filiation Attributes . 77
6.7 Document Type . 77
6.8 Population Registry Data Model . 83
6.9 Event Type . 87
6.10 Person Attributes . 91
6.11 Certificate Attributes . 91
6.12 Union Attributes . 91
6.13 Filiation Attributes . 91
6.14 Document Type . 91
6.15 Biometric Services Options . 98
6.16 Biometric Data Model . 99
6.17 Credential Data Model . 104

7.1 Event Type & Message . 116
7.2 Person Attributes . 126

223

OSIA, Release 5.0.0

7.3 Matching Error Object . 126
7.4 Expression Object . 126
7.5 Error Object . 126

List of Tables 224

List of Figures

1.1 The dependency challenge . 2

2.1 Components identified as part of the identity ecosystem . 8
2.2 Birth Use Case . 13
2.3 Death Use Case . 14
2.4 Deduplication Use Case . 15
2.5 ID Card Request Use Case (1) . 16
2.6 ID Card Request Use Case (2) . 17
2.7 Bank account opening Use Case . 18
2.8 Collaborative identity control . 18
2.9 Telco Customer Enrollment with ID document . 19
2.10 Telco Customer Enrollment with no ID document . 20

5.1 Subscription & Notification Process . 31
5.2 readPersonAttributes Sequence Diagram . 33
5.3 matchPersonAttributes Sequence Diagram . 34
5.4 verifyPersonAttributes Sequence Diagram . 35
5.5 queryPersonUIN Sequence Diagram . 35
5.6 queryPersonList Sequence Diagram . 36
5.7 readDocument Sequence Diagram . 36
5.8 generateUIN Sequence Diagram . 38
5.9 Enrollment Data Model . 43
5.10 Population Registry Data Model . 50
5.11 Biometric Data Model . 58
5.12 Credential Data Model . 62

6.1 Enrollment Data Model . 70
6.2 Subscription & Notification Process . 71
6.3 readPersonAttributes Sequence Diagram . 73
6.4 matchPersonAttributes Sequence Diagram . 74
6.5 verifyPersonAttributes Sequence Diagram . 75
6.6 queryPersonUIN Sequence Diagram . 75
6.7 queryPersonList Sequence Diagram . 76
6.8 readDocument Sequence Diagram . 76
6.9 Population Registry Data Model . 84
6.10 Subscription & Notification Process . 85
6.11 readPersonAttributes Sequence Diagram . 87
6.12 matchPersonAttributes Sequence Diagram . 88
6.13 verifyPersonAttributes Sequence Diagram . 89

225

OSIA, Release 5.0.0

6.14 queryPersonUIN Sequence Diagram . 89
6.15 queryPersonList Sequence Diagram . 90
6.16 readDocument Sequence Diagram . 90
6.17 generateUIN Sequence Diagram . 92
6.18 Biometric Data Model . 100
6.19 Credential Data Model . 104

List of Figures 226

HTTP Routing Table

/${request.query.callback}
POST ${request.query.callback}, 199

/v1
GET /v1/attributes/{attributeSetName}/{identifier},

214
GET /v1/credentialRequests/{credentialRequestId},

202
GET /v1/credentials/{credentialId},

207
GET /v1/enrollments/{enrollmentId},

129
GET /v1/enrollments/{enrollmentId}/buffer/{bufferId},

139
GET /v1/galleries, 159
GET /v1/galleries/{galleryId}, 159
GET /v1/identify/{taskID}, 220
GET /v1/persons, 120
GET /v1/persons/{personId}, 142
GET /v1/persons/{personId}/encounters,

166
GET /v1/persons/{personId}/encounters/{encounterId},

171
GET /v1/persons/{personId}/encounters/{encounterId}/templates,

182
GET /v1/persons/{personId}/identities,

145
GET /v1/persons/{personId}/identities/{identityId},

150
GET /v1/persons/{personId}/reference,

157
GET /v1/persons/{uin}, 121
GET /v1/persons/{uin}/document, 124
GET /v1/subscriptions, 111
GET /v1/subscriptions/confirm, 112
GET /v1/topics, 114
POST /v1/attributes/{identifier}, 216
POST /v1/credentialProfiles, 211
POST /v1/credentialRequests/{credentialRequestId},

200
POST /v1/credentials, 206
POST /v1/credentials/{credentialId}/revoke,

209

POST /v1/credentials/{credentialId}/status,
210

POST /v1/credentials/{credentialId}/suspend,
208

POST /v1/credentials/{credentialId}/unsuspend,
208

POST /v1/enrollments, 135
POST /v1/enrollments/{enrollmentId},

127
POST /v1/enrollments/{enrollmentId}/buffer,

137
POST /v1/identify, 218
POST /v1/identify/{galleryId}, 186
POST /v1/identify/{galleryId}/{personId},

188
POST /v1/persons, 140
POST /v1/persons/{personIdTarget}/merge/{personIdSource},

145
POST /v1/persons/{personId}, 142
POST /v1/persons/{personId}/encounters,

163
POST /v1/persons/{personId}/encounters/{encounterId},

169
POST /v1/persons/{personId}/identities,

147
POST /v1/persons/{personId}/identities/{identityId},

149
POST /v1/persons/{uin}/match, 122
POST /v1/persons/{uin}/verify, 123
POST /v1/subscriptions, 109
POST /v1/topics, 113
POST /v1/topics/{uuid}/publish, 115
POST /v1/uin, 119
POST /v1/verify, 193
POST /v1/verify/{galleryId}/{personId},

191
POST /v1/verify/{identifier}, 212
PUT /v1/credentialRequests/{credentialRequestId},

203
PUT /v1/enrollments/{enrollmentId},

130
PUT /v1/enrollments/{enrollmentId}/finalize,

135
PUT /v1/persons/{personId}, 143

227

OSIA, Release 5.0.0

PUT /v1/persons/{personId}/encounters/{encounterId},
174

PUT /v1/persons/{personId}/encounters/{encounterId}/status,
180

PUT /v1/persons/{personId}/identities/{identityId},
152

PUT /v1/persons/{personId}/identities/{identityId}/reference,
156

PUT /v1/persons/{personId}/identities/{identityId}/status,
155

DELETE /v1/credentialRequests/{credentialRequestId},
205

DELETE /v1/enrollments/{enrollmentId},
134

DELETE /v1/persons/{personId}, 144
DELETE /v1/persons/{personId}/encounters/{encounterId},

177
DELETE /v1/persons/{personId}/identities/{identityId},

155
DELETE /v1/subscriptions/{uuid}, 112
DELETE /v1/topics/{uuid}, 114
PATCH /v1/enrollments/{enrollmentId},

132
PATCH /v1/persons/{personId}/identities/{identityId},

154

/{$request.query.address}
POST {$request.query.address}, 110

HTTP Routing Table 228

Index

A
ABIS, 108

C
CMS, 108
CR, 108
Credential, 108

E
Encounter, 108

F
Functional systems and registries, 108

G
Gallery, 108

H
HTTP Status Codes, 108

M
Mime Types, 108

O
OSIA, 109

P
PR, 109

R
RFC

RFC 6750, 21
RFC 7396, 40, 46, 67, 80
RFC 7519, 21

U
UIN, 109

229

	Introduction
	Problem Statement: vendor lock-in
	The OSIA Initiative
	Diffusion, Audience, and Access
	Document Overview
	Convention and Typographical Rules
	Revision History

	Functional View
	Components: Standardized Definition and Scope
	Interfaces
	Components vs Interfaces Mapping
	Use Cases - How to Use OSIA
	Birth Use Case
	Death Use Case
	Deduplication Use Case
	ID Card Request Use Case (1)
	ID Card Request Use Case (2)
	Bank account opening Use Case
	Police identity control Use Case
	Telco Customer Enrollment with ID document
	Telco Customer Enrollment with no ID document

	Security & Privacy
	Introduction
	Virtual UIN
	Authorization
	Principles
	Rules
	Scopes
	REST Interface Implementation

	Privacy by Design
	Privacy for end-to-end systems
	PII actors
	Data subject rights
	What should OSIA API implementors do to prepare for safe PII?

	OSIA Versions & Referencing
	Interfaces
	Notification
	Services
	Dictionaries

	Data Access
	Services
	Dictionaries

	UIN Management
	Services

	Enrollment Services
	Services
	Attributes
	Transaction ID
	Data Model

	Population Registry Services
	Services
	Data Model

	Biometrics
	Services
	Options
	Data Model

	Credential Services
	Services
	Attributes
	Data Model

	ID Usage
	Relying Party API
	Attribute set
	Attribute set name
	Output Attribute set

	Components
	Enrollment Component
	Enrollment Services

	Population Registry
	Notification
	Data Access
	Population Registry Services

	Civil Registry
	Notification
	Data Access

	UIN Generator
	UIN Management

	ABIS
	Biometrics

	Credential Management System
	Credential Services

	ID Usage
	ID Usage

	Annexes
	Glossary
	Data Format
	Technical Specifications
	Notification
	UIN Management
	Data Access
	Enrollment
	Population Registry Management
	Biometrics
	Credential Services
	ID Usage Services

	HTTP Routing Table
	Index

