0SIA

Specifications version 6.1.0

©Secure Identity Alliance, 2022

CONTENTS

Introduction
1.1 Problem Statement: lack of interoperability in identity systems 1
1.2 The OSIA Initiative e e e e e e e e e e e e e e 2
1.3 OSIA Benefits o o e e e e e e e e e e e e e e 2
1.4 Diffusion, Audience, and ACCESS v v e e e e e e e e e e e e 3
1.5 Document OVEIVIEW o v v i v i e e et e e e e e e e e e e e e e e e 3
1.6 Convention and Typographical Rules 4
1.7 Revision History o L e e e e e 4
Functional View 5
2.1 Building Blocks: Standardized Definition and Scope 5
2.2 Interfaces e e e e e 7
23 UseCases-HowtoUse OSIA e e 9
23.1 BirthUse Case v i v it e e e e e e e e e e 10
232 DeathUseCase v v v v v it e e e e e e e e e e e e e e 11
233 Deduplication Use Caseot v it i 12
234 IDCardRequestUse Case (1) o i i ittt ittt 12
235 IDCardRequestUse Case (2) o v v i i i i it i e et 14
2.3.6 Credentials Issuance Use Case i v v i i v v i it e e et 14
2.3.7 Bankaccountopening Use Case v vt it i 16
2.3.8 Policeidentity control Use Case o i i v it ittt 16
2.3.9 Telco Customer Enrollment with ID document 17
2.3.10 Telco Customer Enrollment with no ID document 18
Security & Privacy 19
3.1 Introduction e e e e e e e e 19
32 Virtual UIN e e e e e e e e e e 19
3.3 Authorization L e e e e e e e e e e e e e e e 19
331 Principles e e e e e e e e e e e 19
332 Rules . ..o e e 20
333 SCOPES . . v o e e e e e 20
3.3.4 REST Interface Implementation 22
34 Privacy by Design e 22
3.4.1 Privacy forend-to-end systems e e e 23
342 PITACIOTS '« . v v v v i e 23
343 Datasubjectrights L e 24
344 What should OSIA API implementors do to prepare for safe PII? 26
OSIA Versions & Referencing 27
Interfaces 28
5.1 Notification o e e e e e e e e e e 28
ST Services e e e e e e e 29
5.1.2 Dictionaries e 30
5.2 Data ACCESS . . . v i e e e e e e e e e e e e e 31

5.2.1 SErVIiCES . . . v e e e e 31

5.2.2 Dictionaries e e e e e e e e e e e e e e e e e 34
5.3 UINManagement v v v v v vttt e et e e e e e e e e e e e e e e 35
53.1 Serviceso e e e e e e e 35
5.4 Enrollment SErvices e e e e e 36
541 Services e e e e e e e 36
542 Attributes e e e e e e e e e e e 39
543 TransactionID e 39
544 DataModel e e e e e 39
5.5 Population Registry Services oo 40
551 Services e e e e e e e 40
552 DataModel e e e e 46
5.6 Biometrics e e e e e 47
5.6.1 Services e e e e e e e e e e e e e 48
562 Options e 53
5.63 DataModel 54
5.7 Credential Services e e e e 55
5.7.1 0 Services o e e e e e e e e e e e e e e e 55
572 Atributes e e e e e e e e e e e e e e e 58
573 DataModel e e 58
5.8 IDUsage e e 59
5.8.1 Relying Party APL. e 60
5.82 Attribute set e e e e e e e e e e e 61
5.83 Attribute setname e e e e e e e e e e e e e e 61
5.84 Output Attribute set L e 61
Building Blocks 62
6.1 Building Blocks High Level Functionalities 62
6.1.1 Enrollment e e e e 62
6.1.2 Biometric System (ABIS) 63
6.1.3 Population Registry (PR) 63
6.1.4 CivilRegistry (CR) o e e e e e e 64
6.1.5 Credential Management System (CMS), 64
6.1.6 Third Party Services e 65
6.1.7 UINGenerator o ot v i i e e e e e e e e e e e e e e e e 65
6.2 Mapping Building Blocks vs Interfaces L oL 65
Technical Specifications 68
7.1 Notification e e e e e e e e 68
Tl Services o e e e e e 68
7.1.2 Notification MeSSage v v v v i e e e e e e e e e e e e 75
7.2 UINManagement o v i i vttt et e e e e e e e e e e e e 78
T.2.1 0 Services . . . v . i e e e e e e e e e e e e 79
T3 Data ACCESS . . . v v i e e e e e e e e e e e 80
731 Services e e 80
732 DataModel e e 85
7.4 Enrollment e e e e e e e e e e 86
T4 ServiCes . . . v . i e e e e e e e e e 86
742 DataModel e e e e 100
7.5 Population Registry Management Lo 106
751 Services e e e e e 107
752 DataModel e e 129
7.6 BIOMELriCsS e e e e e e e e e e e e e e 135
T.6.1 Services e e e e e e e e 135
7.6.2 DataModel e e e 187
7.7 Credential Services L e e e e e e e e 194
TT.1 0 Services o e e e e e e e 194
7.7.2 DataModel e e e 207

7.8 IDUsage Services o v i i i e e e e e e e e e e e e
7.8.1 Relying Party Services e e
T.8.2 SEIVICES . . v v v o i e e e e e e e e e
7.83 DataModel e
8 Annexes
.1 GloSsary e e e e e e e e e e e e
8.2 DataFormat e e e
8.3 LiCense o e e e e
HTTP Routing Table
Index

214
226

233
233
234
234

241

243

CHAPTER
ONE

INTRODUCTION

1.1 Problem Statement: lack of interoperability in identity systems

Target 16.9 of the UN Sustainable Development Goals is to “provide legal identity for all, including birth regis-
tration” by the year 2030. But there is a major barrier: the lack of vendor/provider and technology neutrality -
commonly known as “vendor lock-in”.

The lack of vendor and technology neutrality and its consequences becomes apparent when a customer needs to
replace one building block of the identity management solution with one from another provider, or expand the
scope of their solution by linking to new building blocks. Main technology barriers are the following:

1. Solution architectures are not interoperable by design. The lack of common definitions as to the overall
scope of an identity ecosystem, as well as in the main functionalities of a system’s building blocks (civil
registry, biometric identification system, population registry etc.), blurs the lines between building blocks
and leads to inconsistencies. This lack of so-called irreducibly modular architectures makes it difficult, if
not impossible, to switch to a third-party building block intended to provide the same function and leads to
incompatibilities when adding a new building block to an existing ecosystem.

2. Standardized interfaces (APIs) do not exist. Building blocks are often unable to communicate with each
other due to varying interfaces (APIs) and data formats, making it difficult to swap out building blocks or
add new ones to the system.

For government policy makers tasked with implementing national identification systems, vendor lock-in is now
one of their biggest concerns.

The Challenge

- T ABIS
Lin k\
o

Replace

VA AR
G

B

Dependency challenges equate to cost and operational risk

Fig. 1.1: The dependency challenge

OSIA, Release 6.1.0

1.2 The OSIA Initiative

Launched by the not-for-profit Secure Identity Alliance, Open Standard Identity APIs (OSIA) is an initiative created
for the public good to address vendor lock-in problem.

OSIA addresses the vendor lock-in concern by providing a simple, open standards-based connectivity layer between
all key building blocks within the national identity ecosystem.

OSIA scope is as follows:

1. Build a common understanding of the functional scope for identity systems building blocks - NON
PRESCRIPTIVE

OSIA’s first step has been to formalize the definitions, scope, and main functionalities of each building block
within the identity management system.

2. Create a set of standardized interfaces and data dictionary - PRESCRIPTIVE

For this core piece of work, OSIA is focused on developing the set of interfaces and standardized data
dictionary needed to connect the multiple identity system building blocks and ensure seamless interactions
via pre-defined services.

It is then down to each government to define and implement the interaction processes between individual
building blocks (which in turn determines which interfaces are associated with each building block), accord-
ing to local laws and regulations.

With OSIA, governments are free to select the building blocks they need, from the suppliers they choose - without
fear of lock in.

And because OSIA operates at the interface layer, interoperability is assured without the need to rearchitect envi-
ronments or rebuild solutions from the ground up. ID ecosystem building blocks are simply swapped in and out as
the use case demands - from best-of-breed options already available on the market.

This real-world approach dramatically reduces operational and financial risk, increases the effectiveness of existing
identity ecosystems, and rapidly moves government initiatives from proof of concept to live environments.

1.3 OSIA Benefits

The OSIA initiative offers a wide range of benefits to implementers of national ID management solutions.
1. Unleash market innovation

OSIA establishes the conditions that support an equal marketplace and makes it possible for the wider identity
community to collaborate in new ways.

 Create a marketplace where all vendors can compete equally: OSIA operates at the interface layer and
does not define - or therefore favor - any technology at the building block layer (which is typically
where the differentiation among vendors takes place).

» Support the emergence of new local market models featuring local suppliers and SMEs: Like the Open
Banking revolution, OSIA exposes high performing standardized interfaces that enable new use cases
and market offers - from the simple to the complex.

* Ensure product(s) compatibility after Mergers & Acquisitions: Market consolidation can often lead to
major products being put into maintenance - leaving governments with little choice but to replace these.
With OSIA, whatever the status of a product, it will continue to be interoperable with new offers.

2. Enable identity as a service

OSIA empowers governments to build new inclusive eGovernment solutions that give citizens ease of access
to public services or trusted digital ID schemes that extend the use of citizen ID into other online areas - such
as banking and payments.

1.2. The OSIA Initiative 2

OSIA, Release 6.1.0

* Driving digital ID market growth: OSIA facilitates the link between sovereign identity management
solutions and digital identity solutions, like mobile ID, by standardizing the ad hoc interfaces that
decouple providers of the ID management solution and the digital ID solution.

* Reducing fraud within siloed databases/multiple ID systems: OSIA enables the secure and controlled
flow of data and services, like ID deduplication and authentication, across multiple foundational and
functional registries - even where these registries are run by separate ministries and government agen-
cies.

Governments are able to reduce public sector payroll fraud, leakage in social benefits, fraud associated with
tax filing and ensure the integrity of the electoral process.

3. Address integrator/vendor lock-in

OSIA enables governments to exert full control over their sovereign identity systems. So, they can pursue
their national development agendas - without any fear of integrator/ vendor lock-in. Governments are no
longer forced to implement a wall-to-wall solution from a single vendor and will not encounter compatibility
difficulties when evolving their existing legacy solutions. They can:

* Implement multi-vendor programs by mixing selected building blocks from different suppliers.

* Extend legacy solutions or replace legacy building blocks(s) with a new building block(s) from a dif-
ferent supplier(s).

1.4 Diffusion, Audience, and Access

This specification is hosted in GitHub and can be downloaded from ReadTheDocs.
This specification is licensed under The SIA License.

Any country, technology partner or individual is free to download the functional and technical specifications to
implement it in their customized foundational and sectoral ID systems or building blocks. Governments can also
reference OSIA as Open Standards in tenders.Any country, technology partner or individual is free to download
the functional and technical specifications to implement it in their customized foundational and sectoral ID systems
or building blocks. Governments can also reference OSIA as Open Standards in tenders.

For more information on how to reference OSIA please see Section OSIA Versions & Referencing.

1.5 Document Overview

This document aims at:
* formalizing definitions, scope and main functionalities of each building block within the identity ecosystem,

* defining standardized interfaces and data format to connect the multiple ecosystem building blocks to ensure
seamless interaction via pre-defined services.

This document is structured as follows:
 Chapter 1 Introduction: This chapter introduces the problem statement and the OSIA initiative.

e Chapter 2 Functional View: This chapter provides an overview of OSIA interfaces and how they can be
mapped against the various identity ecosystem building blocks. Finally, the chapter describes a series of
use cases where different OSIA interfaces are implemented between multiple identity ecosystem building
blocks.

 Chapter 3 Security & Privacy: This chapter lists a set of Privacy and Security features embedded in OSIA
interfaces specifications.

* Chapter 4 OSIA Versions & Referencing: This chapter describes the way OSIA interfaces can be referenced
in documents and tenders.

» Chapter 5 Interfaces: This chapter describes the specifications of all OSIA interfaces.

1.4. Diffusion, Audience, and Access 3

https://github.com/SecureIdentityAlliance/osia
https://osia.readthedocs.io/en/latest/
https://raw.githubusercontent.com/SecureIdentityAlliance/osia/master/LICENSE

OSIA, Release 6.1.0

 Chapter 6 Building Blocks: This chapter describes OSIA interfaces that each building block of the identity
ecosystem may implement.

e Chapter 7 Technical Specifications: This chapter describes the technical specifications for all OSIA inter-
faces.

» Chapter 8 Annexes: This chapter describes the glossary, data format and license that covers OSIA specifica-
tions.

1.6 Convention and Typographical Rules

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in
RFC 2119.

Code samples highlighted in blocks appear like that:

{
"key": "value",
"another_key": 23

Note: Indicates supplementary explanations and useful tips.

Warning: Indicates that the specific condition or procedure must be respected.

1.7 Revision History

See OSIA Versions & Referencing.

1.6. Convention and Typographical Rules 4

http://www.ietf.org/rfc/rfc2119.txt

CHAPTER
TWO

2.1

FUNCTIONAL VIEW

Building Blocks: Standardized Definition and Scope

OSIA provides seamless interconnection between multiple building blocks part of the identity ecosystem. The
building blocks are defined as follows:

The Enrollment component.

Enrollment is defined as a system to register biographic and/or biometric data of individuals. It is composed
of enrollment client and server.

The Population Registry (PR) component.

PR is defined as “an individualized data system, that is, a mechanism of continuous recording, or of coordi-
nated linkage, of selected information pertaining to each member of the resident population of a country in
such a way to provide the possibility of determining up-to-date information concerning the size and charac-
teristics of that population at selected time intervals. The population register is the product of a continuous
process, in which notifications of certain events, which may have been recorded originally in different ad-
ministrative systems, are automatically linked on a current basis. A. method and sources of updating should
cover all changes so that the characteristics of individuals in the register remain current. Because of the
nature of a population register, its organization, and also its operation, must have a legal basis.”'

The UIN Generator component.
UIN generator is defined as a system to generate and manage unique identifiers.
The Automated Biometric Identification System (ABIS) component.

ABIS is defined as a system to detect the identity of an individual when it is unknown, or to verify the
individual’s identity when it is provided, through biometrics.

The Civil Registry (CR) component.

CR is defined as “the continuous, permanent, compulsory and universal recording of the occurrence and
characteristics of vital events pertaining to the population, as provided through decree or regulation is accor-
dance with the legal requirement in each country. Civil registration is carried out primarily for the purpose
of establishing the documents provided by the law.””

The Credential Management System (CMS) component.

CMS is defined as a system to manage the production, issuance and lifecycle management of credentials
such as ID Cards, passports, driving licenses, digital ID/DTC/driving license, etc. It does not manage the
usage of the issued credentials and related user account data (see Identity Provider)

The Third Party Services component.

! Handbook on Civil Registration and Vital Statistics Systems: Management, Operation and Maintenance, Revision 1, United Nations,
New York, 2018, available at: https://unstats.un.org/unsd/demographic-social/Standards-and-Methods/files/Handbooks/crvs/crvs-mgt-E.pdf
, para 65.

2 Principles and Recommendations for a Vital Statistics System, United Nations publication Sales Number E.13.XVII. 10, New York, 2014,
paragraph 279

https://unstats.un.org/unsd/demographic-social/Standards-and-Methods/files/Handbooks/crvs/crvs-mgt-E.pdf

OSIA, Release 6.1.0

Third Party Services is defined as a system that interfaces with external components that need to leverage
identity databases for verification purposes. It provides services to biometrically authenticate, identify, and
access identity attributes for use cases such as Know Your Customer (KYC).

* The Identity Provider building block.

Identity Provider is defined as a system that creates, maintains, and manages credentials e.g. login/password
and provides authentication services to relying applications within a federation or distributed network. Iden-
tity providers offer user authentication as a service.

* The Digital Credential Issuance & Distribution System.

Digital Credential Issuance & Distribution System is defined as a system in charge of the issuance and
delivery of the digital credentials built within the identity databases under the control of the CMS.

Note: Unlike all the rest of the building blocks, the Identity Provider building block is not expected to implement
OSIA interfaces but rather to consume them.

Note: Digital Credential Issuance & Distribution System building block is out of scope for the current version of
OSIA specification v6.1.0.

The building blocks are represented on the following diagram:

[ENROLLMENT | (Population | (UIN Biometric | (Third ! (Government or)
Registry Generator System Party - | Private Sector
(PR) (AB|S) Services E (taxes, banks, telcos, etc.)
I;:Ient_it
rovider
Enrol. Enrol.
Client Server (Database)
Identit
Provider
(Card Based)
Digital : (i
ICrel enial Tl credential
Dsiggr?gggoi | Distribution
System = System
Identit
Provider
mm OSIA OpenIDConnect, ISO18013, etc.

Fig. 2.1: Building Blocks identified as part of the identity ecosystem

For more information on the functionalities for each building block and on the interfaces that each building block
is recommended to implement, please refer to chapter 6 — Building blocks.

2.1. Building Blocks: Standardized Definition and Scope 6

OSIA, Release 6.1.0

2.2 Interfaces

This chapter describes the following interfaces:
* Notification
A set of services to manage notifications for different types of events as for instance birth and death.
* Data access
A set of services to access data.
The design is based on the following assumptions:

1. All persons recorded in a registry have a UIN that is considered a key to access the person’s data for all
records. Please note that the UIN does not have to be the same throughout all registries (see Chapter 3
- Security & Privacy for more information).

2. The registries (civil, population, or other) are considered as centralized systems that are connected. If
one registry is architectured in a decentralized way, one of its component must be centralized, connected
to the network, and in charge of the exchanges with the other registries.

3. Since the registries are customized for each business needs, dictionaries must be explicitly defined to
describe the attributes, the event types, and the document types. See Data Access for samples of those
dictionaries.

4. The relationship parent/child is not mandatory in the population registry. A population registry im-
plementation may manage this relationship or may ignore it and rely on the civil registry to manage
it.

5. All persons are stored in the population registry. There is no record in the civil registry that is not also
in the population registry.

e UIN Management
A set of services to manage the unique identifier.
* Enrollment Services
A set of services to manage biographic and biometric data upon collection.
* Population Registry Services
A set of services to manage a registry of the population.
* Biometrics
A set of services to manage biometric data and databases.
* Credential Services
A set of services to manage credentials, physical and digital.
e ID Usage
A set of services implemented on top of identity systems to favour third parties consumption of identity data.

The following table describes in detail the interfaces and associated services.

Table 2.1: Interfaces List

Services - Description |
Notification

Subscribe Subscribe a URL to receive notifications sent to one topic

List Subscription Get the list of all the subscriptions registered in the server

Unsubscribe Unsubscribe a URL from the list of receiver for one topic

Confirm Confirm that the URL used during the subscription is valid

Create Topic Create a new topic

continues on next page

2.2. Interfaces 7

OSIA, Release 6.1.0

Table 2.1 — continued from previous page

Services - Description |
List Topics List all the existing topics

Delete Topic Delete a topic

Publish Publish an event to all systems that have subscribed to this topic

Notify Callback registered during subscription and called when an event is published
Data Access

Read Person Attributes Read person attributes

Match Person Attributes

Check the value of attributes without exposing private data

Verify Person Attributes

Evaluate simple expressions on person’s attributes without exposing private
data

Query Person UIN

Query the persons by a set of attributes, used when the UIN is unknown

Query Person List

Query the persons by a list of attributes and their values

Read document

Read in a selected format (PDF, image, etc.) a document such as a marriage
certificate

UIN Management

Generate UIN

| Generate a new UIN

Enrollment Services

Create Enrollment

Insert a new enrollment

Read Enrollment

Retrieve an enrollment

Update Enrollment

Update an enrollment

Partial Update Enrollment

Update part of an enrollment

Finalize Enrollment

Finalize an enrollment (mark it as completed)

Delete Enrollment

Delete an enrollment

Find Enrollments

Retrieve a list of enrollments which match passed in search criteria

Send Buffer

Send a buffer (image, etc.)

Get Buffer

Get a buffer

Population Registry Services

Find Persons

Query for persons, using all the available identities

Create Person

Create a new person

Read Person

Read the attributes of a person

Update Person

Update a person

Delete Person

Delete a person and all its identities

Merge Persons

Merge two persons

Move Identity Move one identity from one person to another one

Create Identity Create a new identity in a person

Read Identity Read one or all the identities of one person

Update Identity Update an identity. An identity can be updated only in the status claimed
Partial Update Identity Update part of an identity. Not all attributes are mandatory.

Delete Identity Delete an identity

Set Identity Status

Set an identity status

Define Reference

Define the reference identity of one person

Read Reference

Read the reference identity of one person

Read Galleries Read the ID of all the galleries

Read Gallery Content Read the content of one gallery, i.e. the IDs of all the records linked to this
gallery

Biometrics

Create Encounter

Create a new encounter. No identify is performed

Read Encounter

Read the data of an encounter

Update Encounter

Update an encounter

Delete Encounter

Delete an encounter

Merge Encounters

Merge two sets of encounters

Move Encounter

Move one encounter from one person to another one

Update Encounter Status

Set an encounter status

Update Encounter Galleries

Set the galleries of an encounter

continues on next page

2.2. Interfaces

OSIA, Release 6.1.0

Table 2.1 — continued from previous page

Services - Description |
Read Template Read the generated template
Read Galleries Read the ID of all the galleries

Read Gallery content

Read the content of one gallery, i.e. the IDs of all the records linked to this
gallery

Identify Identify a person using biometrics data and filters on biographic or contextual
data
Verify Verify an identity using biometrics data

Credential Services

Create Credential Request

Request issuance of a secure credential

Read Credential Request

Retrieve the data/status of a credential request

Update Credential Request

Update the requested issuance of a secure credential

Cancel Credential Request

Cancel the requested issuance of a secure credential

Find Credentials Retrieve a list of credentials that match the passed in search criteria

Read Credential Retrieve the attributes/status of an issued credential (smart card, mobile, pass-
port, etc.)

Suspend Credential Suspend an issued credential. For electronic credentials this will suspend any

PKI certificates that are present

Unsuspend Credential

Unsuspend an issued credential. For electronic credentials this will unsus-
pend any PKI certificates that are present

Revoke Credential

Revoke an issued credential. For electronic credentials this will revoke any
PKI certificates that are present

Set Credential Status

Change the credential status

Find Credential Profiles

Retrieve a list of credential profils that match the passed in search criteria

ID Usage

Verify ID Verify Identity based on UIN and set of attributes (biometric data, demo-
graphics, credential)

Identify Identify a person based on a set of attributes (biometric data, demographics,
credential)

Read Attributes Read person attributes

Read Attributes set

Read person attributes corresponding to a predefined set name

2.3 Use Cases - How to Use OSIA

Below are a set of examples of how OSIA interfaces could be implemented in various use cases.

2.3. Use Cases - How to Use OSIA 9

OSIA, Release 6.1.0

2.3.1 Birth Use Case

X

Mother or Father

1. Checks /J

matchPersonAttributes{mother attributes)

matchPersonAttributes(father attributes)

readPersonAttributes(mother)

readPersonaAttributes(father)

queryPersonUIN(new born attributes)

Additional checks

UIN Generator

2. Creat

¢ certificate |

generateUIN()

[[t

1. Checks

3. Notification
publish(birth,UiN)

readPersonAttributes(new born)

readPersonAttributes(mother)

readPersonAttributes(father)

create/update identities 'ﬁ
.

Fig. 2.2: Birth Use Case

When a request is submitted, the CR may run checks against the data available in the PR using:

* matchPersonAttributes: to check the exactitude of the parents’ attributes as known in the PR

* readPersonAttributes: to get missing data about the parents’s identity

e qureyPersonUIN: to check if the new born is already known to PR or not

How the CR will process the request in case of data discrepancy is specific to each CR implementation and
not in the scope of this document.

2. Creation

The first step after the checks is to generate a new UIN. To do so, the CR requests a new UIN to the PR
using generateUIN service. At this point the birth registration takes place. How the CR will process the
birth registration is specific to each CR implementation and not in the scope of this document.

3. Notification

As part of the birth registration, it is the responsibility of the CR to notify other systems, including the PR,

of this event using:

* publish: to send a birth along with the new UIN.

The PR, upon reception of the birth event, will update the identity registry with this new identity using:

* readPersonAttributes: to get the attributes of interest to the PR for the parents if relevant and the

new child.

2.3. Use Cases - How to Use OSIA

10

OSIA, Release 6.1.0

2.3.2 Death Use Case

Authorized Notifier

]
1. Identify /J
queryPersonUIiN

matchPersonAttributes(subject attributes)

readPersonAttributes(subject)

Additional checks

2. Notify Death /

| report notification of the death Iﬁ

Ask to confirm netification

updateldentity

provisional certificate

. Registration /

publish(death UIN)

[

readPersonAttributes(subject)

update identity B

b full death certificate available

Fig. 2.3: Death Use Case

1. Subject identification checks

When a death notification is submitted by an authorized party, the CR shall run checks against the data
available in the PR using:

* matchPersonAttributes: to check the exactitude of the subject’s attributes as known in the PR
* readPersonAttributes: to get missing data about the subject’s identity that
* queryPersonUIN: to check if the person is already known to PR or not

How the CR will process the request in case of data discrepancy is specific to each CR implementation and
not in the scope of this document. The CR may implement an internal procedure to create a valid PR record
retrospectively.

2. Notification creation

The first step after the identity checks is to notify the life event status to the PR based on an identified record.
At this point the death notification is recorded by not finally registered. Most states implement a waiting
period. How the CR will process the death notification is specific to each CR implementation - a provisional
certificate is possible.

3. Final registration

When the PR finalizes the status of the subject’s person record then the CR may publish this information at
its discretion. The PR may maintain a list of interested parties who shall be informed of any finalized death
status. A final certificate of death including the context of this event is typically issued by the CR to the
notifier for distribution.

2.3. Use Cases - How to Use OSIA 11

OSIA, Release 6.1.0

2.3.3 Deduplication Use Case

During the lifetime of a registry, it is possible that duplicates are detected. This can happen for instance after the
addition of biometrics in the system. When a registry considers that two records are actually the same and decides
to merge them, a notification must be sent.

deduplicate()
notify(duplicate,[UINT)

.

‘ readPersomAttr\butes(ulN)|

mergel) | mergesregister duplicate

Fig. 2.4: Deduplication Use Case

How the target of the notification should react is specific to each subsystem.

2.3.4 ID Card Request Use Case (1)

An ID card is one type of credential. The procedures surrounding credential issuance may involve several sub-
systems that contribute to the establishment of the applicant identity and the required data for the type of credential.

This use case assumes a simple starting scenario where the identity is known and can be validated, mostly with
data available from a Civil or Population Registry based Identity Provider. These use cases also assume the use of
a Credentials Management System (CMS) responsible for the technical personalization and lifecycle management
of a credential such as an ID card.

The use case aims to show how a selection of the CMS API calls can support a typical, use case in relation to CMS
usage.

2.3. Use Cases - How to Use OSIA 12

OSIA, Release 6.1.0

‘ ‘ Credential Provider
Citizen

if credential is a card | Lost my ID - please replace | N

1. ID Card Check /

queryPersonUiN

matchPersonAttributes(subject attributes)

readPersonAttributes{subject)

other transactions

D validation rules ™

2. Alt Suspend Credential /
SuspendCredentialRequest(CredentialiD)

; e.g. suspend PKI certs 5

confirmation returned (e.g. code204, asymcﬁ)

ReadCredentialRequest(RequestiD get status]

3. Request Credential

build perso data payload 5

CreateCredentialRequest(payload)

CredentialRequestD returned

|
"l just found my lost card"

|
ReadCredentialReguest(RequestiD get status)

CMS card lifecycle actions
(:l e.g. auto cancel old card if new issued

card distribution

"old card cancelled. Collect new in 1 week" | || message to citizen by Service Provider 'ﬁ

icard collection

Fig. 2.5: ID Card Request Use Case (1)

1. Identity Checks

The example scenario assumes a credential provider service such as an ID card provider (National ID, Voter,
&c). Such as service may access several OSIA API based components to establish an ID check. In this
example the Population Register is used. This example case also assumes that the credential provider holds
its own register of credentials issued to its subscribers.

2. Suspend Credential

In the example above the citizen has lost a card and requests a replacement. The credential provider service
first establishes the legitimacy of the citizen identity and the identity of the lost document within its own
register. The next likely step in such a use case is to suspend the current credential. This is done using a
CMS API call. The CMS confirms this step with a reference. In some use cases the reported lost credential
may be cancelled immediately, but this is typically a decision made by the policy of the credential provider.
There is an OSIA API call to both either or both requirements to the CMS.

3. Requesting a New Credential

The credential provider is in this example case responsible for preparing the core document data for the
CMS. The CMS itself may further process this data appropriate to the credential type: for example the CMS
may be the service that signs this document data electronically. The CMS returns a new request ID to the
credential provider service which will enable the provider to query credential production status within the
CMS domain.

Such a business process might be interrupted by an new event such as the citizen finding her lost card and
wishing to cancel the replacement order, perhaps to avoid a replacement fee. Depending on the status returned
by the CMS to the credential provider then the credential provider service will act accordingly in informing
the citizen whether this is possible. In this case the citizen’s card was already replaced by the CMS so the
original card is now cancelled.

The CMS on its side is responsible for maintaining a credential profile which can be accessed by the CR at a
later point. This use case stops for CMS when the card is distributed to the CR for collection by the citizen.

2.3. Use Cases - How to Use OSIA 13

OSIA, Release 6.1.0

2.3.5 ID Card Request Use Case (2)

A second ID Request use case shows how the CMS might expose more decisions to the credential providing service.
In this case it is the citizen facing provider that controls the cancellation of the lost document, and this is not
automated within the CMS component.

;(): Credential Provider
Citizen

if credential is a card I | Lost my ID - please replace ! H

1. ID Card Check /

queryPersonUIN

matchPersonAttributes(subject attributes)

readPersonAttributes(subject)

other transactions

D validation rules

2. Alt Suspend Credential J
SuspendCredentialRequest(CredentialiD)

e.g. suspend PKI certs B

confirmation returned (e.g. code204, asynch)

ReadCredentialRequest(RequestID get status]

3. Credential _/
build perse data payload &

CreateCredentialRequest(payload)

CredentialRequestiD returned

"| just found my lost card" .

ReadCredentialRequest{RequestiD get status)

4. Alt Cancel Credential | 5
ntlal /7 ! option if cancellation
CancelCredentialRequest(CredentiallD) ' request for lost credential ID B| not autematic
I _ N
CMS card lifecycle actions

confirmation returned (e.g. code204, asynch)

ReadCredentialReguest(RequestiD get status)I

card distribution

"Old Card cancelled. Collect new in 1 week" message to citizen by Service Pruviderlﬁ

ard collection

Fig. 2.6: ID Card Request Use Case (2)

This second example shows how APIs may be used to flex the control over functions such as credential lifecycle
management. This example first makes use of the API to suspend a credential pending production of a replacement;
then a second API call is made to the CMS to instruct cancellation of the lost document.

2.3.6 Credentials Issuance Use Case
This use case describes an example of interaction between the different OSIA components to capture identity data,
generate a UIN, process the identity data and issue both a physical and digital credential.

This use case also demonstrates what a middleware could do when connected to multiple OSIA compatible systems.
In this example the middleware is acting as an enrollment server, scheduling all the processing when the data
collection is finalized.

This use case was implemented for demonstrating OSIA and is presented in this video.

2.3. Use Cases - How to Use OSIA 14

https://www.youtube.com/watch?v=U8mWKxIOiaE

OSIA, Release 6.1.0

‘ ‘ Enrollment Station Middleware PR ABIS CMS1 CMS2
Citizen ‘

biographics
documents
face
fingerprints
ok
createEnrollment(collected data),

generate identity id

generateUIN()

createPerson(UIN)

createldentityWithid(UIN, identityld, biographics, documents)

201

createEncounter(UIN, identityld, face, fingerprints)
200 [J
<

createCredentialRequest(UIN, identityld, biographics, face, fingerprints, type="Physical)

201
<

createCredentialRequest{UIN, identityld, biegraphics, face, fingerprints, type=Digital)

201 ‘J

Later

physical credential

—1

digital credentja

Fig. 2.7: Credentials Issuance Use Case

The main steps are:

1. The citizen interacts with the enrollment station to provide the biographic data, the supporting document
images, a portrait and a set of fingerprints.

2. When all the data is collected, the full data set if pushed to the middleware using the OSIA
createEnrollment service.

3. Backend processing includes:
* interactions with the population registry to generate a UIN and insert the collected data,
* interaction with the ABIS to insert the face and fingerprints,

* interactions with multiple Credential Management System to request the issuance of different types of
credentials.

2.3. Use Cases - How to Use OSIA 15

OSIA, Release 6.1.0

2.3.7 Bank account opening Use Case

X

Citizen Bank attendant

H Go to agency

Third Party Services
T

1. Verify Identit
UIN + Biometrics

verifyldentity(UIN, biometric or civil data or credential)

YN

create account for UIN

2. Get certified Attributes J

readAttributeSet (UIN, attribute set name)

readPersonAttributes(UIN)

List of attributes values

fill-in attributes in bank account [ﬁ

Fig. 2.8: Bank account opening Use Case

2.3.8 Police identity control Use Case

2

Third Party Senvices ABIS
man = -

Citizen Paolice
| Show D card i
—_——

i Capture fingerprint

1. Verify Identit
UIN + Biometrics

R

verifyldentity(UIN, biometric or civil data or credentiall

YN

ow corresponding attributes P

readAttributeSet (UINL, attribute set name)

readPersonAttributes(UIN1)

List of attributes values

readAttributeSet (UIN2, attribute set name)

readtPersonAttributes(Uinz)

List of attributes values

readAttributeSet (UIN3, attribute set name)

I
readPersonAttributes(UIN3)

List of attributes values display attributes for each can

didate Iﬁ

Fig. 2.9: Collaborative identity control

2.3. Use Cases - How to Use

OSIA

16

OSIA, Release 6.1.0

2.3.9 Telco Customer Enroliment with ID document

X X

Customer Agent

T pany senvees

[} ask for siM card and present ID doc _[]
sk for SiM card and present 1D doc .
UIN, Identity info, live facial portrait, scan & ID of doc

UIN, Identity info, live facial portrait, scan & ID of doc_ |

checkCredentialDocument(UIN, Doc ID, Name, Ist name, DoB)

L ok(proof of verfication)

read: ttributes(id document D)

(issuing agency, issuing date, expiration date)

HES

Auther i compare person's ive face
! | against credential portrait

te Holder of ID doc(Live portrait, UIN, doc ID)

ok(proof of verification)

readattributes(UIN)

(Name, 1st name, DOC, Place of Birth, &c)

Okfor Sit

continue SIM order

continue SIM order

Fig. 2.10: Telco Customer Enrollment with ID document

1. Use case objective
This use case allows a telco operator to check a citizen’s ID document and identity.

The use case relies on an IDMS to check the authenticity and validity of the ID document presented by the
citizen, then to check that he actually is the holder of the document.

2. Pre-conditions

The citizen is registered in the IDMS and has a UIN.

The citizen has a valid ID document.

The citizen presents as a customer to the agent.

The IDMS should support authentication token generation to protect against misusage of UIN.
3. Use case description

The customer shows his ID document to the Agent. The Agent inputs (possibly by reading an MRZ on the
document) the UIN, document ID, name, given name, DOB, and a live facial portrait taken of the citizen.

The telco server calls an IDMS API to check if the information of the ID document is coherent and if the
document is still valid.

The telco server calls an IDMS API to get meta data of the document such as the issuing agency, the issuing
date, expiration date, etc.

The telco server calls an IDMS API to check if the customer is actually the holder of the document using his
live biometric portrait.

The telco server calls an IDMS API to get some reliable data of the customer in order to register him.
4. Result

The citizen is now identified, authenticated and registered in a customer database and becomes eligible to
buy a SIM card.

The telco operator can prove regulatory controls have been applied for ‘Know Your Customer’ compliance.

2.3. Use Cases - How to Use OSIA 17

OSIA, Release 6.1.0

2.3.10 Telco Customer Enrollment with no ID document

A customer applying for a new network SIM card may not be able to present an ID document as part of her
application.

[Tin person request for a SiM card _ | |

: ‘ ‘ ‘ Telco Enrollment Client Third Party Services
Customer Agent - - -

UIN, Identity info, live facial portrait_ |

UIN, Identity info, live facial portrait_ |

|| Thanks to his UIN

| | the citizen is identifed,
verifyidentity{UIN, Name, 1st name, DOB, portrait with liveness)_ | [he Gl2en 18 IGentiet,

he is authenticated

oklproof of verification)

Get the identified and
readAttributes(UIN) authenticated citizen
{I attributes

ok{Name, 1st name, DOC, Place of Birth, &c)

new customer registrationlidentity info and proof of verification)

ok for SIM card(customer ID)

continue SIM order

continue SIM order

Fig. 2.11: Telco Customer Enrollment with no ID document

1. Use case objective

This use case allows a telco operator to check a citizen’s identity and get his attributes relying on IDMS to
check that the biometrics of the citizen matches with his UIN.

2. Pre-conditions
The citizen is registered in the IDMS and has a UIN.
The citizen biometrics are registered and associated to his UIN.
The citizen presents as a customer to the agent.
The IDMS should support authentication token generation to protect against misusage of UIN.
3. Use case description
The Agent inputs the citizen’s UIN, Name, 1st Name, DOB and takes a live photo portrait of the customer.

The telco server calls an IDMS API to check if the customer is actually the citizen corresponding to the given
UIN thanks to his live portrait (face biometric matching).

The telco server calls an IDMS API to get some reliable data of the customer in order to register him.
4. Result

The citizen is now identified, authenticated and registered in a customer database and becomes eligible to
buy a SIM card.

The telco operator can prove regulatory controls have been applied for ‘Know Your Customer’ compliance.

2.3. Use Cases - How to Use OSIA 18

CHAPTER
THREE

SECURITY & PRIVACY

3.1 Introduction

OSIA defines a set of interfaces/APIs rather than a complete identity management system. It is therefore out of
scope for OSIA to recommend security and privacy mechanisms beyond the APIs level.

3.2 Virtual UIN

All persons recorded in a registry have a UIN that is considered a key to access the person’s data for all records.
Please note that the UIN does not have to be the same throughout all registries as long as there is a mechanism to
map all different UINs among them.

3.3 Authorization

This chapter describes how to secure OSIA APIs through the usage of standard JWT but not how to generate and
protect such tokens, nor how to secure a complete identity management system.

3.3.1 Principles

Securing OSIA services is implemented with the following principles:

* Rely on JWT: “JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be trans-
ferred between two parties” It can be “digitally signed or integrity protected with a Message Authentication
Code (MAC) and/or encrypted”. [RFC 7519]

» Tokens of type “Bearer Token” are used. [RFC 6750] The generation and management of those tokens are
not in the scope of this document.

* Validating the token is the responsibility of the service implementation, with the help of components not
described in this document (PKI, authorization server, etc.)

» The service implementations are responsible for extracting information from the token and give access or
not to the service according to the claims contained in the token and the scope defined for each service in
this document.

* The service implementations are free to change the security scheme used, for instance to use OAuth2 or
OpenlD Connect, if it fits the full system security policy. Scopes must not be changed.

* All HTTP exchanges must be secured with TLS. Mutual authentication is not mandatory.

Note: The added use of peer-to-peer payload encryption - e.g. to protect biometric data - is not in the scope of
this document.

19

https://tools.ietf.org/html/rfc7519.html
https://tools.ietf.org/html/rfc6750.html

OSIA, Release 6.1.0

Note: OSIA does not define ACL (Access Control List) to protect the access to a subset of the data. This may be
added in a future version.

Warning: Bearer tokens are sensitive and subject to security issues if not handled properly. Please refer to
JSON Web Token Best Current Practices for advice on proper implementation.

3.3.2 Rules

All scopes are named according to the following rules:
application[.resource].action
where:
* application is a key identifying the interface group listed in /nterfaces. Examples: notif, pr, cr, abis, etc.
* resource is a key identifying the resource. Examples: person, encounter, identity, etc.
* action is one of:
— read: for read access to the data represented by the resource and managed by the application.
— write: for creating, updating or deleting the data.

— or another value, for specific actions such as match or verify that need to be distinguished from a general
purpose read or write for proper segregation.

Scopes should be less than 20 characters when possible to limit the size of the bearer token.

3.3.3 Scopes

The following table is a summary of all scopes defined in OSIA.

Table 3.1: Scopes List

Services ~ Scope |
Notification

Subscribe notif.sub.write

List Subscription notif.sub.read

Unsubscribe notif.sub.write

Confirm notif.sub.write

Create Topic notif.topic.write

List Topics notif.topic.read

Delete Topic notif.topic.write

Publish notif.topic.publish

Notify N/A

Data Access

Read Person Attributes pr.person.read or cr.person.read
Match Person Attributes pr.person.match or cr.person.match
Verify Person Attributes pr.person.verify or cr.person.verify
Query Person UIN pr.person.read or cr.person.read
Query Person List pr.person.read or cr.person.read
Read document pr.document.read or cr.document.read
UIN Management

Generate UIN \ uin.generate

Enrollment Services

continues on next page

3.3. Authorization 20

https://tools.ietf.org/id/draft-ietf-oauth-jwt-bcp-02.html

OSIA, Release 6.1.0

Services
Create Enrollment

Table 3.1 — continued from previous page
~ Scope

enroll.write

Read Enrollment

enroll.read

Update Enrollment

enroll.write

Partial Update Enrollment

enroll.write

Finalize Enrollment

enroll.write

Delete Enrollment

enroll.write

Find Enrollments

enroll.read

Send Buffer

enroll.buf.write

Get Buffer

enroll.buf.read

Population Registry Services

Find Persons pr.person.read
Create Person pr.person.write
Read Person pr.person.read
Update Person pr.person.write
Delete Person pr.person.write
Merge Persons pr.person.write
Move Identity pr.identity.write
Create Identity pr.identity.write
Read Identity pr.identity.read
Update Identity pr.identity.write
Partial Update Identity pr.identity.write
Delete Identity pr.identity.write

Set Identity Status

pr.identity.write

Define Reference

pr.reference.write

Read Reference

pr.reference.read

Read Galleries pr.gallery.read
Read Gallery Content pr.gallery.read
Biometrics

Create Encounter

abis.encounter.write

Read Encounter

abis.encounter.read

Update Encounter

abis.encounter.write

Delete Encounter

abis.encounter.write

Merge Encounters

abis.encounter.write

Move Encounter

abis.encounter.write

Update Encounter Status

abis.encounter.write

Update Encounter Galleries

abis.encounter.write

Read Template abis.encounter.read
Read Galleries abis.gallery.read
Read Gallery content abis.gallery.read
Identify abis.identify

Verity abis.verify
Credential Services

Create Credential Request cms.request.write

Read Credential Request cms.request.read
Update Credential Request cms.request.write
Cancel Credential Request cms.request.write
Find Credentials cms.credential.read
Read Credential cms.credential.read
Suspend Credential cms.credential .write
Unsuspend Credential cms.credential.write
Revoke Credential cms.credential.write
Set Credential Status cms.credential.write
Find Credential Profiles cms.profile.read

continues on next page

3.3. Authorization

21

OSIA, Release 6.1.0

Table 3.1 — continued from previous page

Services ~ Scope |
ID Usage

Verify ID id.verify

Identify id.identify

Read Attributes id.read

Read Attributes set id.SET_NAME.read

3.3.4 REST Interface Implementation

The OpenAPI files included in this document must be changed to:

1. Define the security scheme. This is done with the additional piece of code:

components:
securitySchemes:
BearerAuth:
type: http
scheme: bearer
bearerFormat: JWT

2. Apply the security scheme and define the scope (i.e. permission) for each service. Example:

paths:
/yyy:
get:
security:
- BearerAuth: [id.read] # List of scopes
responses:
'200"':
description: OK
'401":
description: Not authenticated (bad token)
'403"':
description: Access token does not have the required scope

See the different YAML files provided in Technical Specifications.

3.4 Privacy by Design

Privacy by design is a founding principle of the OSIA initiative.
The OSIA API is designed to support the protection of private citizens’ Personal Identifiable Information (PII).

The protection of PII data is a central design concern for all identity based systems regardless of where these are
based.

PII data does not recognize geographical boundaries; it moves across systems and jurisdictions. Similarly, the
OSIA initiative is not geographically limited. OSIA takes its strong reference point from the European Union’s
GDPR regulation because this is considered by many as a best practice approach. GDPR anticipates the possible
adverse consequences from the mobility of PII whether inside or outside the EU.

The General Data Protection Regulation (GDPR) is quite recent. It was introduced across the EU in 2016, before
reaching its full legal effect in 2018. It is adopted by all EU governments and carries direct regulatory and legal
force for any organization handling Personal Identifiable Information (PII), either in the EU or in connection with
EU citizens or residents. Compliance failure in respect of GDPR carries significant financial penalties, reflecting
the rights of individuals and groups, as well as the importance of the issue.

GDPR is not the only defined standard, but it is seen as a best practice one. It is exemplary approach for the
safeguarding of PII; but, it should also be seen as a safeguard for a system owner/operator’s interests. It is a major
driver for government leadership in Identity Management is to prevent identity fraud.

3.4. Privacy by Design 22

https://swagger.io/docs/specification/authentication/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#securitySchemeObject

OSIA, Release 6.1.0

3.4.1 Privacy for end-to-end systems

For privacy the bigger goal is to protect PII across the full reach of ID systems. The OSIA API is a fundamental
part and principle of the building process, providing definitions of how components are connected.

This is a part of a wider story. An end-to-end solution making use of the OSIA API should address three specific
areas of concern for PII.

Correct implementation of the API definition

PII data flows through systems. API based connectivity between functional components is by definition a way of
sharing information, which will focus mostly on PII. The OSIA API defines what should happen between appli-
cation endpoints involving OSIA framework components. It defines content and a minimum acceptable security
standard for implementation.

Pll safeguards within the components connected by the APls

The API concept is built around functional components: the sub-systems for Identity Management.

As well as the correct implementation or use of the appropriate API, a component should also meet PII requirements
while this is present within the component. Such internal component design and PII behavior is the responsibility
of the component supplier.

The customer architect responsible for an API connected solution should therefore ensure that the internal logic
of an individual component is itself GDPR compliant. The API concept cannot itself provide any guarantee that
components are designed with the same or sufficient internal levels of PII safeguards. What the API can do is to
preserve this level of trust and prevent the creation of new vulnerabilities between these components.

The workflow connecting components in an OSIA enabled solution

OSIA provides a model for an open architecture. An end-to-end identity system may use some, or all of the
OSIA components. It may use additional components to move data through the system. Wherever the system
uses components to move data that are not covered by the OSIA framework definition then these should support
end-to-end security with the same objective of GDPR compliance.

3.4.2 PIl actors

The GDPR approach provides simple definitions.

» PIl is a very wide category of information. It can be a name, a photo, a biometric, an email address, bank
details, social media postings, medical data, and even an IP address;

* The PII data belongs to a Data Subject who is a natural person that might identified directly or indirectly
using the PII;

* The usage, rules, and means of processing PII are determined by a Data Controller (e.g. the Government
agency);
» The data is processed by a Data Processor.

When a government department acts as owner of an ID system then it is a Data Controller. It may also act as the
Data Processor if it operates this system ‘in house’.

However, in today’s commercial world the Data Controller is equally likely to delegate some processing to a data
center or to a business service for all or part of the system. In this case these delegated parties are Data Processors,
and they also subject to the PII considerations.

Suppliers of the systems purchased and commissioned by Data Controllers, and operated by Data Processors are
not directly subject to the regulation.

3.4. Privacy by Design 23

OSIA, Release 6.1.0

3.4.3 Data subiject rights

A GDPR data subject has several rights that should be reflected throughout the wider ID systems architecture.

The right to be forgotten

A subject may ask for her data to be deleted.

Depending on the purpose and the authority of the system this right may be restricted or blocked, however the
deletion of non-essential PII data may be a requirement according to some local laws. The Data Controller should
be able to justify why specific items of PII need to be retained against the subject’s wishes, and when there is no
reason for retention then the automated purging of unnecessary data is generally recommended.

An example impact of this for APl usage is where an enrollment client holds enrollee data until receiving a response
via the API from the enrollment server to the effect that any client stored data can be deleted. The Data Processor
operating the client is responsible to ensure this deletion is systematically applied. Typically this may be done with
a configuration in the component product used.

Privacy by design

Systems should be designed to limit data collection, retention and accessibility.

This applies equally to APIs as to the system components themselves. No more data should be passed over an API
than is required. A component passing or receiving data should consider how to minimize what new PII it collects,
shares, and stores. The Data Controller should know by design what data is held and where; as well as which APIs
are sharing what data.

An example of this principle for API usage can be where a credential management system receives PII over an APl
for credential production, then deletes the PII once the document is produced successfully. The system may limit
its retained data to production audit data. A credential management system with a different set of responsibilities
defined by the Data Controller may justify the retention of a wider set of PII, which might be replicated elsewhere
in the system. A subject might ask to know where this data sits. The Controller should be able to tell the subject,
and the Processor able to prove it.

Breach notifications

Supervisory powers vary globally. In the EU organizations have to notify their national supervisory authority in
the event of a discovered data breach involving PII. They are given a 72 hour period to do this after becoming aware
of the breach. The purpose of this notice period is to allow the organization to determine the nature and the impact
of the data breach.

Data subjects have the right to be informed about data breaches involving their personal data.

By following the Privacy by Design approach, detection and data exposure can be assessed more accurately and
quickly. Data is typically in transit between sub-systems, then at rest or in use within a given sub-system. When
correctly implemented the OSIA API concept provides assurance against breaches at the API in-transit level. Com-
bined with the knowledge of what data is stored, and where, this Privacy by Design approach assists in the detection
of breaches.

At the time of GDPR’s introduction the biggest issuing facing most organizations was not the implementation of
new controls, but the discovery of where and what data was in their possession. The made it very difficult to know
if data was ever compromised.

3.4. Privacy by Design 24

OSIA, Release 6.1.0

Risk and impact assessments

Looking at systems overall an organization has to perform a privacy impact assessment.

This describes what PII is collected, and how this is maintained, protected, and shared. This may be done as part
of a wider ISO 27000 process including risk assessment, but this is not mandatory.

Today most providers of components within the OSIA framework will provide such a privacy impact assessment
statement for their products, including the GDPR controls in that product.

Taken together with the OSIA API specification then these assessments can be compiled to an overall statement of
system PII compliance.

Consent

Systems that deal with identity as their core subject matter may not be legally required to obtain consent for the
capture and use of PII data. However, in this service-centric world more and more transactional and contextual
data is captured, so this should not be assumed. If this data is to be collected then organizations have to obtain
valid and explicit consent from the individuals.

The organizations must also be able to prove that they have gotten consent, not forgetting that in the EU individuals
may withdraw their consent.

In the EU additional safeguards apply, where parental consent is required if personal data is to be collected about
children under the age of 16.

An API usually indicates that the use or status of data is changing, so it should always be considered. Passing PII
over an API requires that the consent covers the scope of this data sharing.

An example of this situation might be where an enrollment system captures biometric data to be loaded to a cre-
dential using an API. The Data Controller later decides that the same captured data will be passed via a new API
to a biometric matching system. Both the Data Controller and Processor might find that they are processing this
data contrary to the principle of consent. If consent matters in this case then the introduction of the new API may
alert the user to a change of use. This is not to say that such changes only happen where APIs are concerned, but
the OSIA API framework does represent different functions across Identity Management, and therefore indicates
that consent may be a relevant consideration.

Data portability

The portability of requirement was conceived for both transparency and commercial reasons.

PII held should be usable by the Data Subject upon request. For privacy it may be held encrypted in the Data
Processor system, but must be provided in a structured and commonly useable format to the Data Subject under
reasonable terms of access.

An example scenario might be where a Data Subject wishes to have a copy of a child’s birth record in a printed
format or a format recognized by a third party. The concept of data portability may in some cases be implemented
by a report service, or in some cases use an OSIA API to support the retrieval of personal attribute data to meet
this demand.

3.4. Privacy by Design 25

OSIA, Release 6.1.0

3.4.4 What should OSIA API implementors do to prepare for safe PII?

1.

Appoint someone as the organization’s own GDPR or PII data expert. Someone who understands the Data
Controller business requirements, and knows the technologies likely to be used for data processing.

GDPR is a good example of best practice in PIl Management, but it is vital to understand the current local
regulatory environment. Local existing laws and regulations take precedence unless subject to GDPR, and
even then local laws may be stricter.

Use the OSIA API specification to understand the security organization of functional systems that might be
needed and document an overall assessment of the PII privacy risk. Pay particular attention to sensitive data,
and to the aggregation of PIL.

Ensure that component suppliers understand and support the principles of good PII management, or GDPR.
Most suppliers provide a description of how this is enforced in their products or systems. They may even
provide a user manual and training for this function.

. Document the design and lifecycle of data in the end-to-end system. The OSIA API Specification will help

with this. It does not provide the full PII story, but it does provide the basis for the parts between components
that the customer or its systems integrator will be responsible for.

Consider the Data Subject consent requirements, based on the functions that subject data will be subject to.

If the role is Data Controller, but not Data Processor then ensure that the organization used for Data Process-
ing can understand and meet the guidelines for PII protection.

Remember that good planning and execution are essential, but it might be asked to prove correct operation.
Systems logs and audit data should be available. This should include API usage to indicate where data has
been transferred.

3.4. Privacy by Design 26

CHAPTER
FOUR

OSIA VERSIONS & REFERENCING

There will be a version for each interface. Each interface can be referenced in tenders as follows:
OSIA v. [version] - [interface name] v. [version number]

For instance below is the string to reference the Notification interface:
OSIA v. 2.0 - Notification v. 1.0.0

Below is the complete list of available interfaces with related versions.

Versions published by Secure Identity Alliance GEIE, located in Paris, France:

Table 4.1: OSIA Services Versions (Old Licence)

OSIA Release .0. .0. 3.0.0 41.0
OSIA Release Date nov- jul-2020
2019

Notification . 1.2.0 1.2.0
UIN Management 1.0.0 1.0.0 1.0.0 1.1.0 1.2.0 1.2.0
Data Access 1.0.0 1.0.0 1.0.0 1.1.0 1.3.0 1.3.0
Enrollment Services . . . 1.0.0 1.1.0 1.2.0
Population Registry Services . . 1.0.0 1.2.0 1.3.0 1.4.0
Biometrics Services . 1.0.0 1.1.0 1.3.0 1.4.0 1.5.0
Credential Services . . . 1.0.0 1.1.0 1.2.0
Relying Party Services 1.0.0 1.1.0

Versions published by Secure Identity Alliance ASBL, located in Brussels, Belgium, under a new licence named
the “OSIA License”.

Table 4.2: OSIA Services Versions (New Licence)

OSIA Release 6.1.0

OSIA Release Date dec-2022

Notification 1.2.0
UIN Management 1.2.0
Data Access 1.3.0
Enrollment Services 1.2.1
Population Registry Services 141
Biometrics Services 1.5.1
Credential Services 1.2.1
Relying Party Services 1.1.1

27

CHAPTER
FIVE

INTERFACES

The chapter below describes the specifications of all OSIA interfaces and related services.

5.1 Notification

See Notification for the technical details of this interface.

The subscription & notification process is managed by a middleware and is described in the following diagram:

Notification
Emitter Engine
| \

| First step is to create the topic Iﬁ

create_topicinam

uuid

| Then a systemn can subscribe for events published on that topic b'

‘ subscr\be(tupm.nut\fyiuRL)|
U\d

later

i i
confirm the address before the subscription is active B'

‘ notify{message) |

confirm(token)

ok

>
ok
| it is now possible to publish notification H
| publish(message) ‘
store

ok

L
loop / [subscriptions]
notify{message)

ok

ke

Fig. 5.1: Subscription & Notification Process

28

OSIA, Release 6.1.0

5.1.1 Services

For the Subscriber
subscribe (topic, URL)
Subscribe a URL to receive notifications sent to one topic
Authorization: notif.sub.write
Parameters
* topic (str) — Topic
* URL (str) — URL to be called when a notification is available
Returns a subscription ID
This service is synchronous.

listSubscriptions()
Get all subscriptions

Authorization: notif.sub.read
Parameters URL (str) — URL to be called when a notification is available
Returns a subscription ID
This service is synchronous.

unsubscribe (id)
Unsubscribe a URL from the list of receiver for one topic

Authorization: notif.sub.write
Parameters id (str) — Subscription ID
Returns bool
This service is synchronous.

confirm(token)
Used to confirm that the URL used during the subscription is valid

Authorization: notif.sub.write
Parameters token (str)— A token send through the URL.
Returns bool

This service is synchronous.

For the Publisher
createTopic (topic)
Create a new topic. This is required before an event can be sent to it.
Authorization: notif.topic.write
Parameters topic (str) - Topic
Returns N/A
This service is synchronous.

listTopics()
Get the list of all existing topics.

Authorization: notif.topic.read

Returns N/A

5.1. Notification

29

OSIA, Release 6.1.0

This service is synchronous.

deleteTopic (topic)
Delete a topic.

Authorization: notif.topic.write

Parameters topic (str) — Topic

Returns N/A

This service is synchronous.

publish(topic, subject, message)

Notify of a new event all systems that subscribed to this topic
Authorization: notif.topic.publish

Parameters

* topic (str) — Topic

* subject (str) — The subject of the message

* message (str) — The message itself (a string buffer)

Returns N/A

This service is asynchronous (systems that subscribed on this topic are notified asynchronously).

For the Receiver

notify(message)

Receive an event published by a publisher. This service needs to be registered through the subscription

process.

Parameters message (str) — The message itself (a string buffer)

Returns N/A

5.1.2 Dictionaries

As an example, below there is a list of events that each component might handle.

Table 5.1: Event Type

Event Type
Live birth

Emitted by CR

Emitted by PR

Death

Foetal Death

Marriage

Divorce

Annulment

Separation, judicial

Adoption

Legitimation

Recognition

Change of name

Change of gender

New person

Duplicate person

v
v
v
v
v
v
v
v
v
v
v
v
v

5.1. Notification

30

OSIA, Release 6.1.0

5.2 Data Access

See Data Access for the technical details of this interface.

5.2.1 Services

readPersonAttributes (UIN, names)
Read person attributes.

Authorization: pr.person.read or cr.person.read
Parameters
* UIN (str) — The person’s UIN
* names (list[str])— The names of the attributes requested

Returns a list of pair (name,value). In case of error (unknown attributes, unauthorized access,
etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

‘ CR can request persen's attributes from PR 'ﬁ

| readPersonattributes(UIN,[names]) _ |
T |

| attribut |
iatibutes

‘ PR can request person's attributes from CRB|
7 T

| readPersonAttributes(UIN,[names]) |

| I
: attributes =

Fig. 5.2: readPersonAttributes Sequence Diagram

matchPersonAttributes (UIN, attributes)
Match person attributes. This service is used to check the value of attributes without exposing private data.
The implementation can use a simple comparison or a more advanced technique (for example: phonetic
comparison for names)

Authorization: pr.person.match or cr.person.match
Parameters
* UIN (str) — The person’s UIN

e attributes (list[(str,str)]) — The attributes to match. Each attribute is de-
scribed with its name and the expected value

Returns If all attributes match, a Yes is returned. If one attribute does not match, a No is returned
along with a list of (name,reason) for each non-matching attribute.

This service is synchronous. It can be used to match attributes in CR or in PR.

5.2. Data Access 31

OSIA, Release 6.1.0

‘ CR can match person's attributes in PR 'ﬁ

| matchPersonAttributes(UIN, [attributes]) _ |
T |

| ¥jN+reasons |

PR can match person's attributes in CR Iﬁ

| _ matchPersonAttributes{UIN, [attributes]) |

| ¥/N+reasons |
. >

Fig. 5.3: matchPersonAttributes Sequence Diagram

verifyPersonAttributes (UIN, expressions)
Evaluate expressions on person attributes. This service is used to evaluate simple expressions on person’s
attributes without exposing private data The implementation can use a simple comparison or a more advanced
technique (for example: phonetic comparison for names)

Authorization: pr.person.verify or cr.person.verify
Parameters
* UIN (str) — The person’s UIN

» expressions (1ist[(str,str,str)]) - The expressions to evaluate. Each expres-
sion is described with the attribute’s name, the operator (one of <, >, =, >=, <=) and the
attribute value

Returns A Yes if all expressions are true, a No if one expression is false.

This service is synchronous. It can be used to verify attributes in CR or in PR.

| CR can verify person's attributes in PR H

| werifyPersonAttributes(UIN,[expressions]) |
r |

| PR can verify person's attributes in CR H

| verifyPersonAttributes(UIN,[expressions]) |

: YN =)

Fig. 5.4: verifyPersonAttributes Sequence Diagram

queryPersonUIN (attributes, offset, limit)
Query the persons by a set of attributes. This service is used when the UIN is unknown. The implementation
can use a simple comparison or a more advanced technique (for example: phonetic comparison for names)

Authorization: pr.person.read or cr.person.read
Parameters

e attributes (list[(str,str)]) — The attributes to be used to find UIN. Each at-
tribute is described with its name and its value

» offset (int) — The offset of the query (first item of the response) (optional, default to
0)

e limit (int) — The maximum number of items to return (optional, default to 100)

Returns a list of matching UIN

5.2. Data Access 32

OSIA, Release 6.1.0

This service is synchronous. It can be used to get the UIN of a person.

‘

| ‘ CR can get UIN frem PR ‘Iﬁ

| queryPersonUIN([attributes]) _ |

D [UIN]

| PR can get UIN from CR E}
T

T
| queryPersonUIN([attributes]) |

L

Fig. 5.5: queryPersonUIN Sequence Diagram

queryPersonList (attributes, names, offset, limit)
Query the persons by a list of attributes and their values. This service is proposed as an optimization of a
sequence of calls to queryPersonUIN() and readPersonAttributes().

Authorization: pr.person.read or cr.person.read
Parameters

* attributes (1ist[(str,str)])— The attributes to be used to find the persons. Each
attribute is described with its name and its value

* names (list[str])— The names of the attributes requested

» offset (int) — The offset of the query (first item of the response) (optional, default to
0)

e limit (int) — The maximum number of items to return (optional, default to 100)

Returns a list of lists of pairs (name,value). In case of error (unknown attributes, unauthorized
access, etc.) the value is replaced with an error

This service is synchronous. It can be used to retrieve attributes from CR or from PR.

.

| CR can request person's attributes from PR Iﬁ

| queryPersonList{[attributes],[names]) _|

e lattrbutes]

| PR can request person's attributes from CR Iﬁ
T 7

| _ queryPersonList([attributes].[names])

: [attributes] -

Fig. 5.6: queryPersonList Sequence Diagram

readDocument (UINs, documentType, format)
Read in a selected format (PDF, image, ...) a document such as a marriage certificate.

Authorization: pr.document.read or cr.document.read
Parameters
» UIN (list[str])— The list of UINs for the persons concerned by the document
* documentType (str) — The type of document (birth certificate, etc.)

» format (str) — The format of the returned/requested document

5.2. Data Access 33

OSIA, Release 6.1.0

Returns The list of the requested documents

This service is synchronous. It can be used to get the documents for a person.

| CR can get a document frem PR h‘

| readDocument([UIN].documentType format)

|
[documents] |
|

r
|
|
&3

| PR can get a document from CR b.

T
readDocument([UIN],documentType format)

[documents]

Fig. 5.7: readDocument Sequence Diagram

5.2.2 Dictionaries

As an example, below there is a list of attributes/documents that each component might handle.

Table 5.2: Person Attributes

Attribute Name ‘ In CR ‘ In PR

UIN

first name

last name
spouse name
date of birth
place of birth
gender

date of death
place of death
reason of death
status

ANENENENENENENEN

SNENENENENENENENENEN

\

Table 5.3: Certificate Attributes

Attribute Name ‘ In CR ‘ In PR

officer name v
number v
date v
place v
type v

Table 5.4: Union Attributes

Attribute Name ‘ In CR ‘ In PR

date of union

place of union
conjoint] UIN
conjoint2 UIN
date of divorce

ANENENENEN

5.2. Data Access 34

OSIA, Release 6.1.0

Table 5.5: Filiation Attributes

Attribute Name ‘ In CR ‘ In PR
v

parent] UIN
parent2 UIN v

Table 5.6: Document Type

Document Type ‘

birth certificate
death certificate
marriage certificate

5.3 UIN Management

See UIN Management for the technical details of this interface.

5.3.1 Services

generateUIN (attributes, transactionlD)
Generate a new UIN.

Authorization: uin.generate
Parameters

» attributes (1ist[(str,str)])— A list of pair (attribute name, value) that can be
used to allocate a new UIN

* transactionID (str) — A free text used to track the system activities related to the
same transaction.

Returns a new UIN or an error if the generation is not possible

This service is synchronous.

UN Generator

| CR can request a new UIN Bh

generataUIN([attributes])

\
|

UIN | |
\

T T
| generateUIN([attributes]) _|
]

Ui

|
I
L |
|
|

i
I

r

I

i

T

I

} ‘ PR can request a new UIN b“
I

i

I

i

I '

I

i]

I '

Fig. 5.8: generateUIN Sequence Diagram

5.3. UIN Management 35

OSIA, Release 6.1.0

5.4 Enrollment Services

This interface describes enrollment services in the context of an identity system. It is based on the following

principles:

* When enrollment is done in one step, the CreateEnrollment can contain all the data and an additional flag
(finalize) to indicate all data was collected.

* During the process, enrollment structure can be updated. Only the data that changed need to be transferred.
Data not included is left unchanged on the server. In the following example, the biographic data is not

changed.

* Images can be passed by value or reference. When passed by value, they are base64-encoded.

* Existing standards are used whenever possible, for instance preferred image format for biometric data is

ISO-19794.

About documents
Adding one document or deleting one document implies that:
¢ The full document list is read (ReadEnrollment)
* The document list is altered locally to the enrollment client (add or delete)

* The full document list is sent back using the UpdateEnrollment service

5.4.1 Services

createEnrollment (enrollmentID, enrollmentTypeld, enrollmentFlags, requestData, contextualData,
biometricData, biographicData, documentData, finalize, transactionlD)
Insert a new enrollment.

Authorization: enroll.write
Parameters

* enrollmentID (str) — The ID of the enrollment. If the enrollment already exists for
the ID an error is returned.

* enrollmentTypelId (str)— The enrollment type ID of the enrollment.
» enrollmentFlags (dict) — The enrollment custom flags.
e requestData (dict) — The enrollment data related to the enrollment itself.
* contextualData (dict) — Information about the context of the enrollment
e biometricData (1ist) — The enrollment biometric data.
* biographicData (dict) — The enrollment biographic data.
e documentData (1ist) — The enrollment biometric data.
o finalize (str) - Flag to indicate that data was collected.
* transactionID (string) — The client generated transactionID.
Returns a status indicating success or error.

readEnrollment (enrollmentID, attributes, transactionID)
Retrieve the attributes of an enrollment.

Authorization: enroll.read
Parameters

e enrollmentID (str)— The ID of the enrollment.

5.4. Enrollment Services

36

OSIA, Release 6.1.0

» attributes (set) — The (optional) set of required attributes to retrieve.
* transactionID (string) — The client generated transactionID.
Returns a status indicating success or error and in case of success the enrollment data.

updateEnrollment (enrollmentID, enrollmentTypeld, enrollmentFlags, requestData, contextualData,
biometricData, biographicData, documentData, finalize, transactionlD)
Update an enrollment.

Authorization: enroll.write
Parameters

e enrollmentID (str) — The ID of the enrollment. If the enrollment already exists for
the ID an error is returned.

* enrollmentTypelId (str)— The enrollment type ID of the enrollment.
» enrollmentFlags (dict) — The enrollment custom flags.
e requestData (dict) — The enrollment data related to the enrollment itself.
» contextualData (dict) — Information about the context of the enrollment
* biometricData (1ist) — The enrollment biometric data, this can be partial data.
* biographicData (dict) — The enrollment biographic data.
* documentData (1ist)— The enrollment biometric data, this can be partial data.
» finalize (str) - Flag to indicate that data was collected.
» transactionID (string) — The client generated transactionID.
Returns a status indicating success or error.

partialupdateEnrollment (enrollmentID, enrollmentTypeld, enrollmentFlags, requestData, contextualData,
biometricData, biographicData, documentData, finalize, transactionlD)
Update part of an enrollment. Not all attributes are mandatory. The payload is defined as per RFC 7396.

Authorization: enroll.write
Parameters

* enrollmentID (str) — The ID of the enrollment. If the enrollment already exists for
the ID an error is returned.

* enrollmentTypeld (str) — The enrollment type ID of the enrollment.
* enrollmentFlags (dict) — The enrollment custom flags.
e requestData (dict) — The enrollment data related to the enrollment itself.
e contextualData (dict) — Information about the context of the enrollment
* biometricData (1ist)— The enrollment biometric data, this can be partial data.
* biographicData (dict) — The enrollment biographic data.
* documentData (1ist) — The enrollment biometric data, this can be partial data.
» finalize (str) - Flag to indicate that data was collected.
* transactionID (string) — The client generated transactionID.
Returns a status indicating success or error.

finalizeEnrollment (enrollmentID, transactionID)
When all the enrollment steps are done, the enrollment client indicates to the enrollment server that all data
has been collected and that any further processing can be triggered.

Authorization: enroll.write

Parameters

5.4. Enrollment Services 37

https://tools.ietf.org/html/rfc7396.html

OSIA, Release 6.1.0

e enrollmentID (str)— The ID of the enrollment.
* transactionID (string) — The client generated transactionID.
Returns a status indicating success or error.

deleteEnrollment (enrollmentID, transactionlD)
Deletes the enrollment

Authorization: enroll.write
Parameters
e enrollmentID (str)— The ID of the enrollment.
* transactionID (string) — The client generated transactionID.
Returns a status indicating success or error.

findEnrollments (expressions, offset, limit, transactionlD)
Retrieve a list of enrollments which match passed in search criteria.

Authorization: enroll.read
Parameters

» expressions (1ist[(str,str,str)])— The expressions to evaluate. Each expres-
sion is described with the attribute’s name, the operator (one of <, >, =, >=, <=) and the
attribute value

» offset (int) — The offset of the query (first item of the response) (optional, default to
0)

e limit (int)— The maximum number of items to return (optional, default to 100)
* transactionID (string) — The client generated transactionID.
Returns a status indicating success or error and in case of success the matching enrollment list.

createBuffer (enrollmentld, data, digest)
This service is used to send separately the buffers of the images. Buffers can be sent any time from the
enrollment client prior to the create or update.

Authorization: enroll.buf.write
Parameters
e enrollmentID (str)— The ID of the enrollment.
e data (image) — The buffer data.
* transactionID (string) — The client generated transactionID.

» digest (string) — The digest (hash) of the buffer used by the server to check the in-
tegrity of the data received.

Returns a status indicating success or error and in case of success the buffer ID.

readBuffer (enrollmentld, bufferld)
This service is used to get the data of a buffer.

Authorization: enroll.buf.read
Parameters
e enrollmentID (str)— The ID of the enrollment.
e bufferID (str) — The ID of the buffer.
* transactionID (string) — The client generated transactionID.

Returns a status indicating success or error and in case of success the data of the buffer and a
digest.

5.4. Enrollment Services 38

OSIA, Release 6.1.0

5.4.2 Attributes

The “attributes” parameter used in “read” calls is used to provide a set of identifiers that limit the amount of data
that is returned. It is often the case that the whole data set is not required, but instead, a subset of that data. Where

possible, existing standards based identifiers should be used for the attributes to retrieve.

E.g. For surname/familyname, use OID 2.5.4.4 or id-at-surname.

Some calls may require new attributes to be defined. E.g. when retrieving biometric data, the caller may only want
the meta data about that biometric, rather than the actual biometric data.

5.4.3 Transaction ID

The transactionID is a string provided by the client application to identity the request being submitted. It can
be used for tracing and debugging.

5.4.4 Data Model

Type

Enrollment

Table 5.7: Enrollment Data Model

‘ Description
The full set of data which are captured for one purpose.

Example(s)
N/A

Document Data

The documents used as an element of proof for part of
the enrollment data.

Birth certificate, invoice.

Biometric Data

Digital representation of biometric characteristics.
All images can be passed by value (image buffer is in
the request) or by reference (the address of the image
is in the request). All images are compliant with ISO
19794. ISO 19794 allows multiple encoding and sup-
ports additional metadata specific to fingerprint, palm-
print, portrait, iris or signature.

A biometric data can be associated to no image or a
partial image if it includes information about the miss-
ing items (example: one finger may be amputated on
a 4 finger image)

fingerprint, portrait, iris,
signature

Biographic Data

A dictionary (list of names and values) giving the bi-
ographic data of the identity

firstName, lastName,
dateOfBirth, etc.

Enrollment Flags

a dictionary (list of names and values) for custom flags
controlling the enrollment process.

maximum time allowed
to finish the enrollment,
etc.

Request Data

a dictionary (list of names and values) for data related
to the process initiated by the enrollment.

type of request, priority
of execution, type of cre-
dential to produce, etc.

ator (one of <, >, =, >=, <=, !=) and a value. It is used
in search services.

Contextual Data A dictionary (list of names and values) for data related | operatorName,
to the enrollment itself enrollmentDate,

etc.

Attributes Generic name for any information collected during an | firstName, lastName,
enrollment. Attributes can apply on biographic data, | enrollmentDate, etc.
document data, request data, or enrollment flag data.

Expressions An expression combines an attribute’s name, an oper- | firstName=John

5.4. Enrollment Services

39

OSIA, Release 6.1.0

©RequestData ©Enru|\mentFIagsData
string fisld1; string field1;

int field2; int field2;
date field3; date field3;

@EiographicData \1 /

ContextualData
@ Enroliment ©

string fieldl; - :
int field2, - string operator:
date field3 string enrollmentiD: date date;

/

©B|ometr\cData @DucumentData

Eﬁtf[‘]”::;géf int documentType;

"

@Do:umethar‘t

byte(] image:
URL imageRef;

Fig. 5.9: Enrollment Data Model

5.5 Population Registry Services

This interface describes services to manage a registry of the population in the context of an identity system. It is
based on the following principles:

* It supports a history of identities, meaning that a person has one identity and this identity has a history.
» Images can be passed by value or reference. When passed by value, they are base64-encoded.
* Existing standards are used whenever possible.

» This interface is complementary to the data access interface. The data access interface is used to query the
persons and uses the reference identity to return attributes.

¢ The population registry can store the biometric data or can rely on the ABIS subsystem to do it. The preferred
solution, for a clean separation of data of different nature and by application of GDPR principles, is to put
the biometric data only in the ABIS. Yet many existing systems store biometric data with the biographic data
and this specification gives the flexibility to do it.

See Population Registry Management for the technical details of this interface.

5.5.1 Services

findPersons (expressions, group, reference, gallery, offset, limit, transactionID)
Retrieve a list of persons which match passed in search criteria.

Authorization: pr.person.read
Parameters

» expressions (1ist[(str,str,str)]) - The expressions to evaluate. Each expres-
sion is described with the attribute’s name, the operator (one of <, >, =, >=, <=) and the
attribute value

» group (bool) — Group the results per person and return only personID
» reference (bool) — Limit the query to the reference identities
* gallery (string) — A gallery ID used to limit the search

» offset (int) — The offset of the query (first item of the response) (optional, default to
0

5.5. Population Registry Services 40

OSIA, Release 6.1.0

e limit (int)— The maximum number of items to return (optional, default to 100)
* transactionID (string) — The client generated transactionID.
Returns a status indicating success or error and in case of success the matching person list.

createPerson(personlD, personData, transactionlD)
Create a new person.

Authorization: pr.person.write

Parameters

» personlD (str) — The ID of the person. If the person already exists for the ID an error
is returned.

» personData — The person attributes.

* transactionID (str) — A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readPerson (personlD, transactionID)
Read the attributes of a person.

Authorization: pr.person.read
Parameters
» personlD (str) — The ID of the person.

* transactionID (str) — A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error and in case of success the person data.

updatePerson (personlD, personData, transactionID)
Update a person.

Authorization: pr.person.write
Parameters
» personlD (str) — The ID of the person.
» personData (dict)— The person data.
Returns a status indicating success or error.

deletePerson(personlD, transactionlD)
Delete a person and all its identities.

Authorization: pr.person.write
Parameters
e personlD (str) — The ID of the person.

* transactionID (str) — A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

mergePerson(personlDI, personlD?2, transactionlD)

Merge two person records into a single one. Identity ID are preserved and in case of duplicates an error is
returned and no changes are done. The reference identity is not changed.

Authorization: pr.person.write

Parameters

» personlID1 (str) — The ID of the person that will receive new identities

5.5. Population Registry Services a1

OSIA, Release 6.1.0

» personlID2 (str) — The ID of the person that will give its identities. It will be deleted
if the move of all identities is successful.

* transactionID (str) — A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

createldentity(personlD, identitylD, identity, transactionlD)
Create a new identity in a person. If no identityID is provided, a new one is generated. If identityID is
provided, it is checked for uniqueness and used for the identity if unique. An error is returned if the provided
identityID is not unique.

Authorization: pr.identity.write
Parameters
» personlD (str) — The ID of the person.
* identityID (str)— The ID of the identity.
» identity — The new identity data.

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readIdentity (personiD, identitylD, transactionlD)
Read one or all the identities of one person.

Authorization: pr.identity.read
Parameters
» personlD (str) — The ID of the person.
e identityID (str)— The ID of the identity. If not provided, all identities are returned.

* transactionID (str) — A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error, and in case of success a list of identities.

updateIdentity (personID, identityID, identity, transactionlD)
Update an identity. An identity can be updated only in the status claimed.

Authorization: pr.identity.write
Parameters
» personlD (str) — The ID of the person.
e identityID (str)— The ID of the identity.
* identity — The identity data.

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

partialUpdateldentity (personlD, identityID, identity, transactionlD)

Update part of an identity. Not all attributes are mandatory. The payload is defined as per RFC 7396. An
identity can be updated only in the status claimed.

Authorization: pr.identity.write
Parameters

» personID (str) — The ID of the person.

5.5. Population Registry Services 42

https://tools.ietf.org/html/rfc7396.html

OSIA, Release 6.1.0

» identityID (str)— The ID of the identity.
* identity - Part of the identity data.
Returns a status indicating success or error.

deleteldentity(personlD, identitylD, transactionlD)
Delete an identity.

Authorization: pr.identity.write
Parameters
» personlD (str) — The ID of the person.
e identityID (str)— The ID of the identity.

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

setIdentityStatus (personlD, identitylD, status, transactionlD)
Set an identity status.

Authorization: pr.identity.write
Parameters
» personlD (str) — The ID of the person.
* identityID (str)— The ID of the identity.
* status (str) — The new status of the identity.

* transactionID (str) — A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

defineReference (personlD, identityID, transactionlD)
Define the reference identity of one person.

Authorization: pr.reference.write
Parameters
» personlD (str) — The ID of the person.
* identityID (str)— The ID of the identity being now the reference.

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readReference (personlD, transactionID)
Read the reference identity of one person.

Authorization: pr.reference.read
Parameters
» personlD (str) — The ID of the person.

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error and in case of success the reference identity.

5.5. Population Registry Services 43

OSIA, Release 6.1.0

readGalleries (rransactionID)
Read the ID of all the galleries.

Authorization: pr.gallery.read

Parameters transactionlID (str) — A free text used to track the system activities related to
the same transaction.

Returns a status indicating success or error, and in case of success a list of gallery ID.

readGalleryContent (gallerylD, transactionlD, offset, limit)
Read the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: pr.gallery.read
Parameters
* galleryID (str) — Gallery whose content will be returned.

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

» offset (int) — The offset of the query (first item of the response) (optional, default to
0)

e limit (int) — The maximum number of items to return (optional, default to 1000)

Returns a status indicating success or error. In case of success a list of person/identity IDs.

5.5. Population Registry Services 44

OSIA, Release 6.1.0

5.5. Population Registry Services 45

OSIA, Release 6.1.0

5.5.2 Data Model

Gallery

Table 5.8: Population Registry Data Model

Description

A group of persons related by a common purpose, des-

ignation, or status. A person can belong to multiple
galleries.

Example
VIP, Wanted, etc.

Person

Person who is known to an identity assurance system.
A person record has:

¢ a status, such as active or inactive, defin-
ing the status of the record (the record can be
excluded from queries based on this status),

 aphysical status, such as alive or dead, defin-
ing the status of the person,

* a set of identities, keeping track of all identity
data submitted by the person during the life of
the system,

 a reference identity, i.e. a consolidated view
of all the identities defining the current correct
identity of the person. It corresponds usually to
the last valid identity but it can also include data
from previous identities.

N/A

Identity

The attributes describing an identity of a person. An
identity has a status such as: claimed (identity not
yet validated), valid (the identity is valid), invalid
(the identity is confirmed as not valid), revoked (the
identity cannot be used any longer).

An identity can be updated only in the status claimed.
The proposed transitions for the status are represented
below. It can be adapted if needed.

The attributes are separated into two categories: the
biographic data and the contextual data.

N/A

Biographic Data

A dictionary (list of names and values) giving the bi-
ographic data of the identity

firstName, lastName,
dateOfBirth, etc.

Contextual Data

A dictionary (list of names and values) attached to the
context of establishing the identity

operatorName,
enrollmentDate,
etc.

Biometric Data

Digital representation of biometric characteristics.
All images can be passed by value (image buffer is in
the request) or by reference (the address of the image
is in the request). All images are compliant with ISO
19794. 1SO 19794 allows multiple encoding and sup-
ports additional metadata specific to fingerprint, palm-
print, portrait, iris or signature.

A biometric data can be associated to no image or a
partial image if it includes information about the miss-
ing items (example: one finger may be amputated on
a 4 finger image)

fingerprint, portrait, iris,
signature

Document

The document data (images) attached to the identity
and used ta validate it

Birth certificate, invoice

5.5. Population Registry Services

46

OSIA, Release 6.1.0

@ Person
@ Gallery
string personiD;
string gallerylD: enum status: Active | Inactive:
enum physicalStatus: Alive | Dead;
*

identities /reference

¥
©Contextua\Data @1 dentity @Bmgraphchata
string firstName;
e] string identityiD il — et Gapeotmr:
date Fields: g;tuerﬂ fﬁ‘:t;%:afala\med | walid | Invalid | Revoked: date dateOfDeath;
. string addressLinel;

0.*
0.
©BmmetricData

string type @ Document
string subType

byte[] image
URL imageRef

enum type: Docl | Doc2 | Signature | etc;
string instance:

1]

1.

© DocumentPart

int[] pages;

byte[] data;

URL dataRef;

int width;

int height;

date captureDate;
string captureDevice;
string format;

Fig. 5.10: Population Registry Data Model

5.6 Biometrics

This interface describes biometric services in the context of an identity system. It is based on the following prin-
ciples:

e It supports only multi-encounter model, meaning that an identity can have multiple set of biometric data,
one for each encounter.

* It does not expose templates (only images) for CRUD services, with one exception to support the use case
of credentials with biometrics.

» Images can be passed by value or reference. When passed by value, they are base64-encoded.

* Existing standards are used whenever possible, for instance preferred image format for biometric data is
ISO-19794.

About synchronous and asynchronous processing

Some services can be very slow depending on the algorithm used, the system workload, etc. Services are described
so that:

* If possible, the answer is provided synchronously in the response of the service.

* If not possible for some reason, a status PENDING is returned and the answer, when available, is pushed to
a callback provided by the client.

If no callback is provided, this indicates that the client wants a synchronous answer, whatever the time it takes.

If a callback is provided, this indicates that the client wants an asynchronous answer, even if the result is immediately
available.

See Biometrics for the technical details of this interface.

5.6. Biometrics 47

OSIA, Release 6.1.0

5.6.1 Services

createEncounter (personID, encounterlD, gallerylD, biographicData, contextualData, biometricData,
clientData, callback, transactionlD, options)
Create a new encounter. No identify is performed.

Authorization: abis.encounter.write
Parameters
» personlD (str)— The person ID. This is optional and will be generated if not provided

* encounterlID (str) — The encounter ID. This is optional and will be generated if not
provided

* galleryID (1ist(str))-the gallery ID to which this encounter belongs. A minimum
of one gallery must be provided

* biographicData (dict) — The biographic data (ex: name, date of birth, gender, etc.)
e contextualData (dict) — The contextual data (ex: encounter date, location, etc.)
* biometricData (1ist) — the biometric data (images)

» clientData (bytes) — additional data not interpreted by the server but stored as is and
returned when encounter data is requested.

e callback — The address of a service to be called when the result is available.

* transactionID (str) — A free text used to track the system activities related to the
same transaction.

» options (dict) — the processing options. Supported options are priority,
algorithm.

Returns a status indicating success, error, or pending operation. In case of success, the person
ID and the encounter ID are returned. In case of pending operation, the result will be sent
later.

readEncounter (personlD, encounterID, callback, transactionlD, options)
Read the data of an encounter.

Authorization: abis.encounter.read
Parameters
» personlD (str) — The person ID

* encounterID (str) — The encounter ID. This is optional. If not provided, all the en-
counters of the person are returned.

e callback — The address of a service to be called when the result is available.

e transactionID (str) — A free text used to track the system activities related to the
same transaction.

» options (dict) — the processing options. Supported options are priority.

Returns astatus indicating success, error, or pending operation. In case of success, the encounter
data is returned. In case of pending operation, the result will be sent later.

updateEncounter (personlD, encounterID, galleryID, biographicData, contextualData, biometricData,
callback, transactionlD, options)
Update an encounter.

Authorization: abis.encounter.write
Parameters
» personlID (str) — The person ID

* encounterID (str) — The encounter ID

5.6. Biometrics 48

OSIA, Release 6.1.0

» galleryID (list(str))— the gallery ID to which this encounter belongs. A minimum
of one gallery must be provided

* biographicData (dict) — The biographic data (ex: name, date of birth, gender, etc.)
e contextualData (dict) — The contextual data (ex: encounter date, location, etc.)
* biometricData (1ist) — the biometric data (images)

» clientData (bytes) — additional data not interpreted by the server but stored as is and
returned when encounter data is requested.

* callback — The address of a service to be called when the result is available.

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

» options (dict) — the processing options. Supported options are priority,
algorithm.

Returns a status indicating success, error, or pending operation. In case of success, the person
ID and the encounter ID are returned. In case of pending operation, the result will be sent
later.

deleteEncounter (personlD, encounterID, callback, transactionlD, options)
Delete an encounter.

Authorization: abis.encounter.write
Parameters
» personlID (str) — The person ID

* encounterlID (str) — The encounter ID. This is optional. If not provided, all the en-
counters of the person are deleted.

* callback — The address of a service to be called when the result is available.

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

» options (dict) — the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of pending operation,
the operation status will be sent later.

mergeEncounter (personlD1, personlD2, callback, transactionlD, options)
Merge two sets of encounters into a single set. Merging a set of N encounters with a set of M encounters
will result in a single set of N+M encounters. Encounter ID are preserved and in case of duplicates an error
is returned and no changes are done.

Authorization: abis.encounter.write
Parameters
» personlID1 (str) — The ID of the person that will receive new encounters
* personlID2 (str)— The ID of the person that will give its encounters
» callback — The address of a service to be called when the result is available.

* transactionID (str) — A free text used to track the system activities related to the
same transaction.
» options (dict) — the processing options. Supported options are priority.
Returns a status indicating success, error, or pending operation. In case of pending operation,

the result will be sent later.

moveEncounter (personID1, personlD2, encounterID, callback, transactionlD, options)
Move one single encounter from one person to another person. Encounter ID is preserved and in case of
duplicates an error is returned and no changes are done.

5.6. Biometrics 49

OSIA, Release 6.1.0

Authorization: abis.encounter.write
Parameters
» personlID1 (str) — The ID of the person that will receive the encounter
» personlID2 (str)— The ID of the person that will give one encounter

* encounterID (str) — the ID of the encounter in personID2 that will be moved in per-
sonlD1.

* callback — The address of a service to be called when the result is available.

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

» options (dict) - the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of pending operation,
the result will be sent later.

readTemplate (personlD, encounterID, biometricType, biometricSubType, templateFormat, qualityFormat,
callback, transactionID, options)
Read the generated template.

Authorization: abis.encounter.read
Parameters

» personlID (str) — The person ID
e encounterID (str) — The encounter ID.
* biometricType (str) — The type of biometrics to consider (optional)
* biometricSubType (str)— The subtype of biometrics to consider (optional)
* templateFormat (str) — the format of the template to return (optional)
* qualityFormat (str) — the format of the quality to return (optional)
» callback — The address of a service to be called when the result is available.

* transactionID (str) — A free text used to track the system activities related to the
same transaction.

» options (dict) - the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. In case of success, a list of
template data is returned. In case of pending operation, the result will be sent later.

updateEncounterStatus (personID, encounterID, status, transactionlD)
Set an encounter status.

Authorization: abis.encounter.write
Parameters
» personlD (str) — The ID of the person.
* encounterID (str) — The encounter ID.
e status (str) — The new status of the encounter.

* transactionID (str) — A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

updateEncounterGalleries (personID, encounterID, galleries, transactionlD)
Update the galleries of an encounter. This service is used to move one encounter from one gallery to another
one without updating the full encounter, which maybe resource consuming in a biometric system.

Authorization: abis.encounter.write

5.6. Biometrics 50

OSIA, Release 6.1.0

Parameters
» personlD (str) — The ID of the person.
e encounterID (str) — The encounter ID.
» galleries (list[str])— The new list of galleries for this encounter.

* transactionID (str) — A free text used to track the system activities related to the
same transaction.

Returns a status indicating success or error.

readGalleries (callback, transactionID, options)
Read the ID of all the galleries.

Authorization: abis.gallery.read
Parameters
* callback — The address of a service to be called when the result is available.

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

» options (dict) - the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. A list of gallery ID is returned,
either synchronously or using the callback.

readGalleryContent (galleryID, callback, transactionlD, offset, limit, options)
Read the content of one gallery, i.e. the IDs of all the records linked to this gallery.

Authorization: abis.gallery.read
Parameters
» galleryID (str) — Gallery whose content will be returned.
* callback - The address of a service to be called when the result is available.

* transactionID (str) — A free text used to track the system activities related to the
same transaction.

» offset (int) — The offset of the query (first item of the response) (optional, default to
0)

e limit (int) — The maximum number of items to return (optional, default to 1000)
» options (dict) — the processing options. Supported options are priority.

Returns a status indicating success, error, or pending operation. A list of persons/encounters is
returned, either synchronously or using the callback.

identify(gallerylD, filter, biometricData, callback, transactionlID, options)
Identify a person using biometrics data and filters on biographic or contextual data. This may include mul-
tiple operations, including manual operations.

Authorization: abis.identify
Parameters
* galleryID (str) — Search only in this gallery.
» filter (dict) - The input data (filters and biometric data)
* biometricData — the biometric data.

» callback — The address of a service to be called when the result is available.

5.6. Biometrics 51

OSIA, Release 6.1.0

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

» options (dict) — the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A list of candidates is returned,
either synchronously or using the callback.

identify(gallerylD, filter, personlD, callback, transactionlD, options)
Identify a person using biometrics data of a person existing in the system and filters on biographic or con-
textual data. This may include multiple operations, including manual operations.

Authorization: abis.verify
Parameters
* galleryID (str) — Search only in this gallery.
» filter (dict) — The input data (filters and biometric data)
* personlID - the person ID
* callback — The address of a service to be called when the result is available.

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

* options (dict) — the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A list of candidates is returned,
either synchronously or using the callback.

identify(gallerylD, filter, personlD, encounterlD, callback, transactionlD, options)
Identify a person using biometrics data of an encounter existing in the system and filters on biographic or
contextual data. This may include multiple operations, including manual operations.

Authorization: abis.verify
Parameters
* galleryID (str) — Search only in this gallery.
» filter (dict) - The input data (filters and biometric data)
* personlID - the person ID
* encounterID - the encounter ID
» callback — The address of a service to be called when the result is available.

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

* options (dict) — the processing options. Supported options are priority,
maxNbCand, threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A list of candidates is returned,
either synchronously or using the callback.

verify(galleryID, personlD, biometricData, callback, transactionID, options)
Verify an identity using biometrics data.

Authorization: abis.verify
Parameters

* galleryID (str) — Search only in this gallery. If the person does not belong to this
gallery, an error is returned.

» personlID (str) — The person ID

5.6. Biometrics 52

OSIA, Release 6.1.0

* biometricData — The biometric data

callback — The address of a service to be called when the result is available.

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

» options (dict) — the processing options. Supported options are priority,
threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A status (boolean) is returned,
either synchronously or using the callback. Optionally, details about the matching result can
be provided like the score per biometric and per encounter.

verify(biometricDatal, biometricData2, callback, transactionlD, options)
Verify that two sets of biometrics data correspond to the same person.

Authorization: abis.verify
Parameters
* biometricDatal — The first set of biometric data
* biometricData2 — The second set of biometric data
» callback — The address of a service to be called when the result is available.

» transactionID (str) — A free text used to track the system activities related to the
same transaction.

* options (dict) — the processing options. Supported options are priority,
threshold, accuracyLevel.

Returns a status indicating success, error, or pending operation. A status (boolean) is returned,
either synchronously or using the callback. Optionally, details about the matching result can
be provided like the score per the biometric.

5.6.2 Options

Table 5.9: Biometric Services Options

NET[E] ‘ Description

priority Priority of the request. Values range from 0 to 9. 0 indicates the lowest priority, 9
indicates the highest priority.

maxNbCand The maximum number of candidates to return.

threshold The threshold to apply on the score to filter the candidates during an identification,
authentication or verification.

algorithm Specify the type of algorithm to be used.

accuracylLevel Specify the accuracy expected of the request. This is to support different use cases,
when different behavior of the ABIS is expected (response time, accuracy, consol-
idation/fusion, etc.).

5.6. Biometrics 53

OSIA, Release 6.1.0

5.6.3 Data Model

Gallery

Table 5.10: Biometric Data Model

Description

A group of persons related by a common purpose, des-

ignation, or status. A person can belong to multiple
galleries.

Example
VIP, Wanted, etc.

Person Person who is known to an identity assurance system. | N/A

Encounter Event in which the client application interacts with | N/A
a person resulting in data being collected during or
about the encounter. An encounter is characterized by
an identifier and a type (also called purpose in some
context).

An encounter has a status indicating if this encounter
is used in the biometric searches. Allowed values are
active or inactive.

Biographic Data A dictionary (list of names and values) giving the bio- | gender, region,
graphic data of interest for the biometric services. This | yearOfBirth
should be as limited as possible.

Filters A dictionary (list of names and values or range of val- | gender,
ues) describing the filters during a search. Filters can | yearOfBirthMin,
apply on biographic data, contextual data or encounter | yearOfBirthMax

type.

Biometric Data

Digital representation of biometric characteristics.
All images can be passed by value (image buffer is in
the request) or by reference (the address of the image
is in the request). All images are compliant with ISO
19794. 1SO 19794 allows multiple encoding and sup-
ports additional metadata specific to fingerprint, palm-
print, portrait, iris or signature.

A biometric data can be associated to no image or a
partial image if it includes information about the miss-
ing items (example: one finger may be amputated on
a 4 finger image)

fingerprint, portrait, iris,
signature

Candidate

Information about a candidate found during an identi-
fication

personld

CandidateScore

Detailed information about a candidate found during
an identification. It includes the score for the biomet-
rics used. It can also be extended with proprietary in-
formation to better describe the matching result (for
instance: rotation needed to align the probe and the
candidate)

3000

Template

A computed buffer corresponding to a biometric and
allowing the comparison of biometrics. A template
has a format that can be a standard format or a vendor-
specific format.

N/A

5.6. Biometrics

54

OSIA, Release 6.1.0

© Filters
(C)candidate © string filter
______ IS int filter2Min:
int rank; int filter2Max;
int score; string personiD; date filter3Min:
q date filter3Max;
\

. \

@ CandidateScore @Cuntextua\Data @ Encounter ©B|ugraph|cData

float score; = FieldL:
string encounterlD: string 'E_ " o
enum biometricType; int field2:
enum biometricSubType;

string encountsriD; string fieldl:
string status: - int field2:
date field3: string encountsrType: date field3:
- byte[] clientData; -

/
/N

@ Gallery @BlumetncData

byte[] image;
URL imageRef;

string galleryiD;

@Template

byte[] buffer;
string format;

Fig. 5.11: Biometric Data Model

5.7 Credential Services

This interface describes services to manage credentials and credential requests in the context of an identity system.

5.7.1 Services

createCredentialRequest (personlD, credential ProfileID, additionalData, transactionlD)
Request issuance of a secure credential.

Authorization: cms.request.write
Parameters
» personID (str) — The ID of the person.
» credentialProfilelID (str)— The ID of the credential profile to issue to the person.

* additionalData (dict) — Additional data relating to the requested credential profile,
e.g. credential lifetime if overriding default, delivery addresses, etc.

» transactionID (string) — The client generated transactionID.
Returns astatus indicating success or error. In the case of success, a credential request identifier.

readCredentialRequest (credentialRequestID, attributes, transactionlD)
Retrieve the data/status of a credential request.

Authorization: cms.request.read
Parameters
* credentialRequestID (str)— The ID of the credential request.
» attributes (set) — The (optional) set of required attributes to retrieve.
* transactionID (string) — The client generated transactionID.
Returns a status indicating success or error, and in case of success the issuance data/status.

updateCredentialRequest (credentialRequestID, additionalData, transactionID)
Update the requested issuance of a secure credential.

5.7. Credential Services 55

OSIA, Release 6.1.0

Authorization: cms.request.write
Parameters
» credentialRequestID (str)— The ID of the credential request.
» transactionID (string) — The client generated transactionID.

» additionalData (dict) — Additional data relating to the requested credential profile,
e.g. credential lifetime if overriding default, delivery addresses, etc.

Returns a status indicating success or error.

cancelCredentialRequest (credentialRequestID, transactionID)
Cancel the requested issuance of a secure credential.

Authorization: cms.request.write
Parameters
» credentialRequestID (str)— The ID of the credential request.
* transactionID (string) — The client generated transactionID.

Returns a status indicating success or error.

findCredentials (expressions, transactionlD)
Retrieve a list of credentials that match the passed in search criteria.

Authorization: cms.credential.read
Parameters

» expressions (1ist[(str,str,str)]) - The expressions to evaluate. Each expres-
sion is described with the attribute’s name, the operator (one of <, >, =, >=, <=) and the
attribute value.

* transactionID (string) — The client generated transactionID.
Returns astatus indicating success or error, in the case of success the list of matching credentials.

readCredential (credentiallD, attributes, transactionID)
Retrieve the attributes/status of an issued credential. A wide range of information may be returned, dependant
on the type of credential that was issued, smart card, mobile, passport, etc.

Authoriz